TEMPOSENSE

Harnessing the Power of Al for Smart Sensing

CVPR 2025 - June 12, 2025

A New Approach to Neuromorphic Sensing

Davide Migliore – Tempo Sense

Company Overview

We are a Team of US-Based Experts in Sensing, Compute, and AI

> Founded in **June 2024** in collaboration with Broadhaven Ventures

ventures

Sroundbreaking, US-based IP and US-based company

> A world-class research and science team with decades of experience in event sensing and compute

Fully integrated solution with sensors, compute, and software, offering out-the-box and customizable options

World-Class Research and Science Team Collaboration

We are a Team of Experts in Sensing, Compute, AI, and Business

Research & Engineering Advisors

Ryad Benosman -

- Formerly Director of Research at Meta
- Co-founder of Prophesee (event-based cameras) and GrAl Matter Labs (neuromorphic Al processors)

Carnegie Mellon University

Sio-Hoi leng -

- Co-Founder of Prophesee and GrAI Matter Labs
- PhD in Computer Vision, University Pierre et Marie Curie
- Associate professor, Université Pierre et Marie Curie

SORBONNE PROPHES

GML Grai Matter Labs

Rajkumar Kubendran –

- Assistant Professor at University of Pittsburgh
- PhD in Electrical and Computer Engineering, Univ. of California, San Diego
- Formerly Qualcomm, Intel, IMEC Belgium and MaxLinear

Kostas Daniilidis –

- Ruth Yalom Stone Professor of Computer and Information Science at the University of Pennsylvania since 1998.
- Professor at Archimedes, Athena Research Center, Greece.

Cornelia Fermüller -

- Research scientist UMIACS at the University of Maryland, College Park
- Co-founder of the Autonomy Cognition and Robotics (ARC) Lab and co-leads the Perception and Robotics Group at UMD.

ernabé Linares-Barranco –

- Director of the Instituto de Microelectrónica de Sevilla
- Stanford top 2% most world-wide cited scientist in Electrical and Electronic Engineering

IMSE Instituto de Microelectrónie -cnm de Sevilla

Re-Imagining Neuromorphic Computer Vision Pipeline

Our technology enables a new generation of smart devices to see better, faster, and smarter than ever before

Tempo Sense Solution: Take Control of the Read-Out

Pixel on demand architecture:

- Innovative IPs enabling full application control over sensor readout
- Seamless synergy between sensor and processing
- Precise readout timing: 100 µs to read the full image plane (200 ns to read two rows)
- Miniaturization-friendly pixel design for future application in wearable devices
- Large fill factor to enhance low-light sensitivity
- Complete control of the event stream to simplify the integration with embedded devices

Tempo Sense Solution: Take Control of the Read-Out

Pixel on demand architecture:

- Innovative IPs enabling full application control over sensor readout
- Seamless synergy between sensor and processing
- Precise readout timing: 100 µs to read the full image plane (200 ns to read two rows)
- Miniaturization-friendly pixel design for future application in wearable devices
- Large fill factor to enhance low-light sensitivity
- <u>Complete control of the event stream to simplify the integration with embedded devices</u>

Traditional Neuromorphic Sensors

The pixel is typically at the center of sensing

https://docs.prophesee.ai/stable/datasets.html

Characteristics:

- 1 µs timestamp resolution, but latency min 100 µs
- Up to 10,000 fps read-out
- Different stream data formats:
 - Traditional x,y,t,p
 - 14 bit for coordinate
 - o 32 for timestamp
 - o 64 bit / event
 - Time encoded (EVT 2.0)
 - 11 bit for coordinate
 - o 34 bit for timestamp
 - ~32 bit / event
 - Data encoded (EVT 3.0)
 - Data vectorization in 16 bit
 - 11 bit for coordinate
 - 24 bit for timestamp
 - ~ 44 bit / event (average on pedestrian dataset)

<u>Problem</u>: The pixel has control of the readout.

$\mathbf{1}$

- 1. Data rate out of control (PSEE ERC).
- 2. Embedded devices interface is challenging, as we do not know the data packets size.

Why "Take control of the read-out"?

Simplify the interface and optimize data transmission

- Read the full image plane within 100 µs and collect all events efficiently.
- Our solution enables implementing a <u>simple</u> encoding that delivers performance equal to or exceeding state-of-the-art standards.
- For example:

Time batched	
Header	128
timestamp	64
num positive	32
num negative	32
Positive Data * num positive	32
x coordinate	16
y coordinate	16
Negative Data * num negative	32
x coordinate	16
y coordinate	16

Time batched Optimized	
<u>Header</u>	128
timestamp	64
num positive	32
num negative	32
Positive Data * num positive	24
x coordinate	12
y coordinate	12
<u>Negative Data * num negative</u>	24
x coordinate	12
y coordinate	12

Simplify the interface and optimized data transmission

Data Rate Pedestrian dataset

https://docs.prophesee.ai/stable/datasets.html

- Average data rate:
- Evt3 Data Rate (MB/s): 6.00
- Evt2 Data Rate (MB/s): 5.14
- Dat Data Rate (MB/s): 10.21
- Time Batched Data Rate (MB/s): 5.26
- Time Batched Optimized Data Rate (MB/s): 3.98

Simplify the interface and optimized data transmission

Data Rate Driving dataset

https://docs.prophesee.ai/stable/datasets.html

TEMPOSENSE

- Average data rate:
- Evt3 Data Rate (MB/s): 28.14
- Evt2 Data Rate (MB/s): 34.20
- Dat Data Rate (MB/s): 68.33
- Time Batched Data Rate (MB/s): 34.32
- Time Batched Optimized Data Rate (MB/s): 25.78

Tempo Sense New Sensor – Coming H2 2026!

	Event-Driven Dynamic Vision Sensors (<i>e</i> DVS)									
	Prophesee GENX320	Sony IMX636	Sony IMX646	Prophesee ISSCC'20	CelePixel CVPR'19	Insightness '18	Samsung ISSCC'17	iniVation JSSC'14	iniVation DVXplorer	Tempo Sense STUN 1
Technology	65nm BSI + 40nm CMOS	90nm BSI CIS + 40nm CMOS	90nm BSI CIS + 40nm CMOS	90nm BSI CIS + 40nm CMOS	65nm CIS	180nm 1P6M CIS	90nm 1P5M	0.18µm 1P6M	90nm BSI CIS	65nm BSI CIS + 40nm CMOS
Resolution	320x320	1280 x 720	1280 x 720	1280 x 720	1280 x 800	320 x 262	640 x 480	240 x 180	640x480	1280x960
Chip Area (mm²)	3 x 4	6.22 x 3.5	6.22 x 3.5	6.22 x 3.5	14.3 x 11.6	5.3 x 5.3	8 x 5.8	5 x 5	8 x 5.8	12 x 9.7
Pixel Size (µm²)	6.3 x 6.3	4.86 x 4.86	4.86 x 4.86	4.86 x 4.86	9.8 x 9.8	13 x 13	9 x 9	18.5 x 18.5	9 x 9	7.8 x 7.8
Fill Factor (%)	-	77	77	77	8	22	11	22	-	90
Supply Voltage (V)	1.1 / 2.5	1.1 / 2.5	1.1 / 2.5	1.1 / 2.5	1.2 / 2.5	1.8 / 3.3	1.2 / 2.8	1.8 / 3.3	1.2 / 1.8 / 2.8	1.1/2.8
Power (mW) (at 100 Keps)	~3	32	32	32	-	20	22	14	~30	TBD
Max. Power (mW)	36	205	205	205	400	70	34	14	<700	TBD
Energy Efficiency (pJ / pixel-event)	-	137	137	137	7,200	2,857	340	-	-	TBD
Typ. Contrast Sensitivity (%)	35	25	25	>11	>10	>15	>9	>11	>13	10
Dynamic Range (dB)	140	86	110	124	120	100	90	120	120	120
Latency (µs) @1Klux	300	100 (9x9 pixels)	800 (9x9 pixels)	100	8	125	65 - 410	12	<1000	100 (full resolution)

Do you want to know more?

Do not hesitate to contact me!

Davide Migliore

davide.migliore@tempo-sense.com www.linkedin.com/in/davidemigliore/

www.tempo-sense.com

And now... Something completely different

What are the most important features of the current event-based sensor technology that you find useful?

What are the most critical technical limitations of current available solutions?

TEMPO SENSE PROPRIETARY

What would accelerate the adoption of event-based sensors?

TEMPO SENSE PROPRIETARY

What is in your opinion a possible "killer application"? cognitive space data drone speed

What is the biggest obstacle preventing neuromorphic technology from widespread adoption?

Which market has the highest potential for event-based?

TEMPOSENSE

VIPO SENSE PROPRIETARY

Do you plan to work with event-based sensors or neuromorphic processing?

If you answered "Yes". What will your research topic be?

stems •perception space S ODOinspired sensin estimation data cking

Thank you!