

Event-Based Visual Sensing: Matching Performance to Application Needs

Kynan Eng

(Alternate title) Why no volume DVS applications (yet)?

34 years of silicon retinasince 199117 years of DVSsince 2008

Approx. \$0.5 – 1B spent so far (mostly R&D)

(Claimed) Applications

How ready for market are these?

Interaction Analysis: Performance

Technical trade-offs

Interaction Analysis: Integration

A SynSense Group compar

Analysis: Market Viability

Roadblocks to application viability

Application		KPI	Sensor	Integration	Cost	Market viable?
	Industrial Inspection	Speed >5 kfps Passive cooling	ОК	OK	OK	Yes, but: ASICs > DVS
¥	Positioning / SLAM	System power <10 mW	ОК	Algorithms too inefficient	OK	Need algorithms & compute hardware
5 .	Wireless surveillance	Indoor power harvesting <1 mW	Power too high	OK	OK	Power irrelevant if plugged in
	Photo anti- blur	Works <1 lux >12 MP	Noisy in low light	OK	OK	DVS too noisy
	Gesture tracking	Works <1 lux HDR	Noisy in low light	New algorithms needed	OK	DVS too noisy
	Eye tracking	Power ~2 mW Size 2 mm	Power too high	New algorithms needed?	OK	Need lower power
	Collision avoidance	<1 lux, HDR, 4K+ resolution	Noisy in low light	New algorithms needed	OK	DVS too noisy

Application Status What's needed to unlock applications?

	DVS issue	Needed work	Applications enabled
1	Noisy in low light Uncontrolled output rate	Sensor architecture Better pixels Efficient encoding	Mobile imaging Collision avoidance Eye tracking
	Processing algorithm mismatch	Processing Better algorithms / processors	SLAM Gesture tracking
	_	Spend \$	Industrial inspection Tracking (drones, stars,)

Application: Glasses Eye Tracking Requirements

	Requirement	Notes	Standard DVS
Die size	<2 x 2 mm	Fit glasses frame	Pixel ~5 um. noisv
Pixel	2-3 µm (Visible + NIR)	Low light critical	· · · · · · · · · · · · · · · · · · ·
Resolution	400 x 400	Population coverage and accuracy	Can group 4x → equiv. 2.5 µm
Frame output	Single shot possible	Authentication use case	DAVIS or Hybrid RGB/DVS
Output rate	1-240 fps	Dower more critical then enced	Output rate affects
Power No lower limit		Power more childar than speed	power

Existing Eye Tracking Sensors

Example state-of-the-art sensors

	Company A	Company B
Die size	1.8 x 1.8 mm	1.69 x 1.69 mm
Resolution	400 x 400 px	400 x 400 px
Frame output	Yes	Yes
Output rate	max. 360 fps	max. 240 fps
Pixel	Frames 2.79 µm BSI	Frames 2.2 µm BSI
Power	7 mW (30 fps)	7.2 mW (30 fps)

Eye Tracking Sensor Design

Achieving lowest possible power

Reducing Sensor Data Output Power

- MIPI hacks
 - Standard ~5 mW
- Reduce data
 - Discard DVS events
 - Other methods?

Aeveon superior noise performance at smaller pixel pitch

Syn Sense

	Legacy DVS	Aeveon	
Change detection	Analog, fixed Leaky, noise and mismatch	Digital, adjustable Very low noise	
Minimum pixel pitch	~5 µm	Events: <1 μm Frames: <1 μm	
Data reduction	Legacy events	Multi-bit digital selectable	
Slow signal change detection	Limited Leaky analog circuit	Unlimited	
Design flexibility	Requires custom pixel Full redesign for every variant	Standard pixels Simple design adaptation	

Aeveon Emulator Pipeline

1/20 speed, 1:30 frames + events

reconstructed_frame

CVPR Stand 1029

Visit us!

Aeveon Eye Tracking

Early Adopter Program

- Software emulator
- Silicon early access

Die size	2.x mm	
Resolution	VGA	
Output types	Frames & rich events	
Output rate	10-1000 fps	
Pixel	<3 µm BSI	
Power	<3 mW	

Speck DVS+SNN SoC

- All-in-one, fully async event-driven
- DVS 128x128
- SNN up to 9 layers

Thanks!

kynan.eng@synsense.ai

