

Event Cameras: a New Way of Sensing

Davide Scaramuzza

http://rpg.ifi.uzh.ch/

BostonDynamics

- 📖

4 74 2

Drone Racing

Autonomous Drone

"Swift"

World's Best Human Pilots

A. Vanover, T. Bitmatta, M. Schaepper

Kaufmann et al., Champion-Level Drone Racing using Deep Reinforcement Learning, Nature, 2023

Kaufmann et al., Champion-Level Drone Racing using Deep Reinforcement Learning, Nature, 2023

Open Challenges in Computer Vision

The past 60 years of research have been devoted to frame-based cameras but they are not good enough

Motion blur

Dynamic Range

Bandwidth-Latency tradeoff

Standard cameras suffer from the bandwidth-latency tradeoff

What is an Event Camera?

- It is camera that measures only motion in the scene
- Key advantages:
 - 1. Low-latency (~ 1 μs)
 - 2. Low bandwidth
 - 3. Negligible motion blur
 - 4. High dynamic range

Traditional vision algorithms cannot be directly applied!

[1] Lichtsteiner, Posch, Delbruck, A 128x128 120 dB 15μs Latency Asynchronous Temporal Contrast Vision Sensor, IEEE Journal of Solid-State Circuits, 2008
[2] Gallego et al., Event-based Vision: A Survey, T-PAMI, 2020

How do we apply event cameras to computer vision

without reconstructing the image?

Event-based Vision: Two Schools of Approaches

1. Event-by-event methods

$$\log I(x, y, t + \Delta t) - \log I(x, y, t) = \pm C$$

2. Batch methods (contrast maximization)

$$\boldsymbol{\theta} = \operatorname{argmax} \sigma^2(I(\boldsymbol{x}; \boldsymbol{\theta}))$$

Application 1: Event-based Feature Tracking

- Goal: Extract features from standard frames and track them using only events in the blind time between two frames
- Uses the 1st order approximation of event generation model via joint estimation of patch warping and optic flow

Gehrig, Rebecq, Gallego, Scaramuzza, *EKLT: Asynchronous, Photometric Feature Tracking using Events and Frames,* International Journal of Computer Vision (IJCV), 2019. <u>PDF. Video</u>. <u>Code</u>

Application 2: "Ultimate SLAM"

Standard camera

Event camera

Estimated trajectory

- Rosinol et al., Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM, RAL'18 Best Paper Award Hon. Mention
- Pellerito, Cannici, Gehrig, Belhadj, Dubois-Matra, Casasco, Scaramuzza, Deep Visual Odometry with Events and Frames, IROS'24
- Hidalgo-Carrió, Gallego, Scaramuzza, Event-aided Direct Sparse Odometry, CVPR'22, Oral

- Rosinol et al., Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM, RAL'18 Best Paper Award Hon. Mention
- Pellerito, Cannici, Gehrig, Belhadj, Dubois-Matra, Casasco, Scaramuzza, Deep Visual Odometry with Events and Frames, IROS'24
- Hidalgo-Carrió, Gallego, Scaramuzza, Event-aided Direct Sparse Odometry, CVPR'22, Oral

Event-based Vision: Two Schools of Approaches

1. Event-by-event methods

 $\log I(x, y, t + \Delta t) - \log I(x, y, t) = \pm C$

2. Batch methods (contrast maximization)

$$\boldsymbol{\theta} = \operatorname{argmax} \sigma^2(I(\boldsymbol{x}; \boldsymbol{\theta}))$$

Gallego et al., Event-based Vision: A Survey, **T-PAMI, 2020** Gallego, Rebecq, Scaramuzza, A Unifying Contrast Maximization Framework for Event Cameras, **CVPR'18**

Contrast Maximization Framework

Idea: Warp spatio-temporal volume of events to **maximize contrast** (e.g., sharpness) of the resulting image

Aggregated image withindurtnotobioncorrection

Gallego, Rebecq, Scaramuzza, A Unifying Contrast Maximization Framework for Event Cameras, CVPR18, PDF, Video Gallego, Gehrig, Scaramuzza, Focus Is All You Need: Loss Functions for Event-based Vision, CVPR19, PDF.

Application 2: Dodging Dynamic Objects

- Perception latency: **3.5 ms**
- Works with relative speeds of up to 10 m/s

Falanga, Kleber, Scaramuzza, Dynamic Obstacle Avoidance for Quadrotors with Event Cameras, Science Robotics, 2020. PDF. Video

Application 3: High-Speed Inspection of Countersinks

Salah et al, Zweiri, High speed neuromorphic vision-based inspection of countersinks in automated manufacturing processes, Journal of Intelligent Manufacturing

Event-based Optical Tactile Sensing

- Perception latency: **1 ms**
- 640x480 pixels, thereby offering both, human-like temporal and spatial resolution

Event-based Optical Tactile Sensing

- Perception latency: **1 ms**
- 640x480 pixels, thereby offering both, human-like temporal and spatial resolution

Combining Events and Frames for Ultimate Performance

Application 1: Slow Motion Video

- We can combine an event camera with an HD RG camera
- We use events to **upsample low-framerate video** by over **50 times** with **only 1/40th of the memory** footprint!

low framerate video input

high framerate video (ours)

Code & Datasets: <u>http://rpg.ifi.uzh.ch/timelens</u>

Tulyakov et al., TimeLens: *Event-based Video Frame Interpolation*, CVPR'21. <u>PDF</u>. <u>Video</u>. <u>Code</u>.

5,000 fps

• Tulyakov, Gehrig, et al., TimeLens: Event-based Video Frame Interpolation, CVPR'21

Advanced Driver Assistance Systems (ADAS)

Tesla Vision System

Memory Bandwidth Requirements by ADAS level

https://www.electronicspecifier.com/industries/automotive/pushing-the-envelope-for-adas-with-advanced-memory-technologies

Can we build a **low-latency** and **low-bandwidth** navigation architecture?

Yes, by combining the complementary advantages of standard and event cameras!

DSEC Dataset: 40km of urban and rural driving across Switzerland

Events

Lidar

RGB Frames

Driven route

Gehrig et al., DSEC: A Stereo Event Camera Dataset for Driving Scenarios, RAL'21: https://github.com/uzh-rpg/DSEC ³¹

Space-time visualization

Standard camera

Event camera

How do we combine the complementary advantages of standard and event cameras?

Magno and Parvo Pathways of the Primate Visual System

Hybrid Asynchronous Navigation Architecture

Low Latency Automotive Vision

We show that using a 20 fps camera plus an event camera can achieve the same latency as a 5,000 fps camera with the bandwidth of a 50 fps camera without compromising accuracy.

The Evolution of Event Cameras

Thanks!

Previous and current sponsors

