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Computational Imaging is the 
Co-Design of Optics and Algorithms
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Computational Imaging in Nature

[National Geographic]

Polarization Multi-focus High dynamic range Ultra-violet



Monocular Depth Estimation

[Ikoma et al. 2021]

Depth Estimation with Computational Imaging



[Ikoma et al. 2021]

Depth Estimation with Computational Imaging



Computational Imaging for …

Seeing through obstructions
(Shi et al. 2022, Xie et al. 2024)

Image classification
(Chang et al. 2018)

High dynamic range
(M. et al. 2020)

Privacy preservation
(Hinojosa et al. 2021)
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Our Goal: Passive 3D Sensing at 1000+ fps

[Agarwal et al. 2018]

[Knowles and Mahmood]

[DJI]

[SpaceX 2019][PBS 2016]

[US Navy 2014]

[National Geography]



One Option: Stereo Event Camera Systems

• Expensive

• Hard to synchronize

• Bulky

Image credit: Zhu et al. 2018



Alterative: Event Camera with Coded Optics

• Expensive

• Hard to synchronize

• Bulky



How a pinhole camera works

SensorPoint light sources Pin-hole

https://www.cs.umd.edu/~shah2022/optics/



How a real camera works

SensorPoint light sources Aperture Lens

Defocus Cue
Point-Spread-Function

https://www.cs.umd.edu/~shah2022/optics/

Cameras naturally encode some depth information



Estimating Depth From Defocus Cues

Depth is challenging to estimate with conventional optical systems

Depth



By introducing a phase mask into the optics, we can change the shape of 
the PSF

We can use elaborate defocus cues to “encode” depth into the images



Double-Helix PSF

[Pavani et al. 2009]

Depth

Depth is easy to estimate with DH optical systems

Can do even better with information 
theory



Designing a Phase Mask for a Conventional Camera

● Have a point source at location x = 𝑥, 𝑦, 𝑧 𝑡

● Observe 𝐼 = Poisson ℎ𝜙 x , where the PSF ℎ is function of the phase mask 𝜙

● Construct the Fisher Information matrix associated with estimating x
○ Error of maximum likelihood estimator of x is bounded by reciprocal of Fisher 

Information

● Design an optimal PSF by maximizing Fisher Information wrt 𝜙

[Shechtman et al. 2014]



Designing a Phase Mask for a Conventional Camera

[Shechtman et al. 2014]



Can we extend this approach to event cameras?



Designing a Phase Mask for an Event Camera

● Have a point source at location x = 𝑥, 𝑦, 𝑧 𝑡 moving with velocity Δx = Δ𝑥, Δ𝑦, Δ𝑧 𝑡 

● Observe 𝐼 = Poisson ℎ𝜙 x , where the PSF ℎ is function of the phase mask 𝜙

● Construct the Fisher Information matrix associated with estimating x
○ Error of maximum likelihood estimator of x is bounded by reciprocal of Fisher 

Information

● Design an optimal PSF by maximizing Fisher Information wrt 𝜙

[Shechtman et al. 2014]



Binning Events

Binning

Time Time



Binning Events

For an idealized event camera (no noise, refractory period, etc.):
∑𝑒𝑖 = log 𝐼𝑡 − log(𝐼𝑡−𝜏)



Binning Events

Binned events = Log difference between frames



Theory: Stationary Flashing Point Source

Key Finding: For blinking fluorescent molecules, 
the Fisher PSF is already optimal!



Theory: Generalization



Challenge #1: Highly non-convex wrt lens parameters

Challenge #2: Depends on particle position and motion



Challenge #1: Highly non-convex wrt lens parameters
Solution #1: Regularize with INRs

Challenge #2: Depends on particle position and motion
Solution #2: Monte Carlo averaging



Implicit Neural Representations

Form functional representations of images (or phase masks)

E.g., a (grayscale) image is a 2D function

domain

grayscale image

[Image Credit: Kris Kitani]



Optical Design with Implicit Neural Representations and MC Sampling

X,Y Coordinates Phase/Amplitude Mask PSFs

Cramér Rao Bound

Sample
Brownian MotionMLP



Optical Design: Learned Masks

Pixel-based
Representation

Zernike-based
Representation

INR-based
Representation

Pixel-based
Representation

INR-based



Theoretical Results



3D Tracking: Simulation Training



3D Tracking: Results



Coded EventRegular EventPrototype

Optical Setup

Lab Prototype: Setup

Next Steps: More sophisticated optics
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Event-Guided Video Frame Interpolation

• Large motion between frames makes rgb-only video frame interpolation ill-posed

• Event-based Video Frame Interpolation (EVFI) addresses this challenge by using sparse, high-temporal-resolution 
event measurements as motion guidance.



Related Work

More paired training data, bigger and more expressive 
models, better performance



Two Issues

More paired event + rgb data → more $$$$

Larger models → more overfitting to specific cameras and interpolation rates

Input Time Lens CBMNet

Out of Domain:

In Domain:



Can we benefit from massive datasets and 
highly expressive models without having 

to generate or train these 
datasets/models ourselves?



Our Contribution: Bring in the Big Guns!

Pretrained Video Diffusion Models

Image Credit: https://stability.ai/news/stable-video-diffusion-open-ai-video-model

1. Internet-scale Data → Strong data prior (Generalization)

2. Video Diffusion → Denoising a video at once, temporal consistency 



Proposed Approach: 

(i) Control a pretrained diffusion model with event guidance

(ii) Preprocess to preserve spatial and temporal resolution

(iii) Use video generation network to perform video interpolation

(i) (ii) (iii) 



Proposed Approach: 

(i) 

ControlNet-style approach adapts a small event-to-latent encoder 
while preserving the original video diffusion models weights.

Can learn to control diffusion model with only a limited amount of 
training data, without the risk of forgetting the original video priors

(i) Control a pretrained diffusion model with event guidance

(ii) Preprocess to preserve spatial and temporal resolution

(iii) Use video generation network to perform video interpolation



Proposed Approach: 

(ii) 

The diffusion models encoding process is inherently lossy

Can preserve fine details by upsampling inputs before encoding

Without upsampling With upsampling

(i) Control a pretrained diffusion model with event guidance

(ii) Preprocess to preserve spatial and temporal resolution

(iii) Use video generation network to perform video interpolation



Proposed Approach: 

(iii) 

Video diffusion model performs generation, not interpolation

To interpolate, run video model forward (from first frame) and in 
reverse (from last frame). Blend latents.

(i) Control a pretrained diffusion model with event guidance

(ii) Preprocess to preserve spatial and temporal resolution

(iii) Use video generation network to perform video interpolation



Results: Generalizes to Extreme Interpolation without Fine Tuning





Downsides?
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High-speed predictive wavefront sensing with event-cameras 

[Ziemann et al. 2024 [Image Credit: Sky and Telescope Magazine]



Dense 3D Reconstruction with Inverse Differentiable Rendering

[Mahbub et al. 2023, Xiong et al. 2024]



References: 
CodedEvents: Optimal Point-Spread-Function Engineering for 3D-Tracking with Event Cameras CVPR 2024
Repurposing pre-trained video diffusion models for event-based video interpolation CVPR 2025. Sat. morning poster session

Event cameras + coded optics

Event cameras + generative models
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