Computational Imaging with
Event Cameras

Chris Metzler

UMD Intelligent
ensing Lab

,@ UNIVERSITY OF o “PRG
S MARYLAND Ly F NG

0P



Computational Imaging is the
Co-Design of Optics and Algorithms



Traditional Computer Vision
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Computational Imaging in Nature

Polarization Multi-focus High dynamic range Ultra-violet

[National Geographic]



Depth Estimation with Computational Imaging

Conventional Coded Image
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[lkoma et al. 2021]



Depth Estimation with Computational Imaging

Conventignal Estimated Depth (conventional) Estimated Depth (MiDaS)
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Computational Imaging for ...

captured PSF

captured input image

captured sensor image

pseudonegative sub-images,
from capture

Image classification
(Chang et al. 2018)

High dynamic range
(M. et al. 2020)

Privacy preservation
(Hinojosa et al. 2021)

Seeing through obstructions
(Shi et al. 2022, Xie et al. 2024)
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Our Goal: Passive 3D Sensing at 1000+ fps

[National Geography] ‘ —

[Agarwal et al. 2018]

[Knowles and Mahmood] [PBS 2016] [SpaceX 2019]



One Option: Stereo Event Camera Systems

* Expensive
* Hard to synchronize
e Bulky

Image credit: Zhu et al. 2018



Alterative: Event Camera with Coded Optics




How a pinhole camera works

Point light sources Pin-hole Sensor
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https://www.cs.umd.edu/~shah2022/optics/



How a real camera works

Point light sources Aperture Lens Sensor

Defocus Cue
Point-Spread-Function
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Cameras naturally encode some depth information

https://www.cs.umd.edu/~shah2022/optics/




Estimating Depth From Defocus Cues

Depth

>

0.7 um 0.7 um

Depth is challenging to estimate with conventional optical systems




By introducing a phase mask into the optics, we can change the shape of
the PSF

Lens

Sensor

Phase Mask

We can use elaborate defocus cues to “encode” depth into the images



Double-Helix PSF

Depth

No Mask

Can do even better with information
theory

DH Mask

Depth is easy to estimate with DH optical systems

[Pavani et al. 2009]



Designing a Phase Mask for a Conventional Camera

e Have a point source at location x = [x,y, z]*

e Observe I = Poisson (h¢ (x)), where the PSF h is function of the phase mask ¢

e Construct the Fisher Information matrix associated with estimating x
o Error of maximum likelihood estimator of x is bounded by reciprocal of Fisher
Information

e Design an optimal PSF by maximizing Fisher Information wrt ¢

[Shechtman et al. 2014]



Designing a Phase Mask for a Conventional Camera
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Can we extend this approach to event cameras?



Designing a Phase Mask for an Event Camera

e Have a point source at location x = [x, v, z]* moving with velocity Ax = [Ax, Ay, Az]*

e CObserve | = Pmi th&ﬂ where the PSF h is function of the phase mask ¢

ey

e Construct the Fisher Information matrix associated with estimating x
o Error of maximum likelihood estimator of x is bounded by reciprocal of Fisher
Information

e Design an optimal PSF by maximizing Fisher Information wrt ¢

[Shechtman et al. 2014]



Binning Events
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Binning Events

I For an idealized event camera (no noise, refractory period, etc.):
- Ye; = log(ly) — log(I;_¢)




Binning Events

Binned events = Log difference between frames

Point Source Log Difference Binned 2 Binned 100
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Theory: Stationary Flashing Point Source

M = log (I,) — log (I_»)
= log (1)
e = I, ~ Poisson (A = PSF)

Key Finding: For blinking fluorescent molecules,
the Fisher PSF is already optimal!




Theory: Generalization

M = log (I;) — log (I;_)
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Challenge #1: Highly non-convex wrt lens parameters

Challenge #2: Depends on particle position and motion




Challenge #1: Highly non-convex wrt lens parameters
Solution #1: Regularize with INRs

Challenge #2: Depends on particle position and motion
Solution #2: Monte Carlo averaging




Implicit Neural Representations

Form functional representations of images (or phase masks)

E.g., a (grayscale) image is a 2D function

grayscale image
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[Image Credit: Kris Kitani]



Optical Design with Implicit Neural Representations and MC Sampling

Sample
X,Y Coordinates MLP Phase/Amplitude Mask PSFs Brownian Motion
0%
e,
Cramér Rao Bound

_————



Optical Design: Learned Masks
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Theoretical Results
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3D Tracking: Simulation Training
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Ground Truth
Trajectory

Coded Frames

Light Intensity
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Event Generation

Coded Events
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3D Tracking: Results

---- Ground Truth
Open
Fisher
NPM -




Lab Prototype: Setup

Prototype Regular Event Coded Event

Next Steps: More sophisticated optics
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Event-Guided Video Frame Interpolation

* Large motion between frames makes rgb-only video frame interpolation ill-posed

* Event-based Video Frame Interpolation (EVFI) addresses this challenge by using sparse, high-temporal-resolution
event measurements as motion guidance.

Beam Splitter

Prophesee EVK4 HD
Event Camera

BFS-U3-31S4C-C
Blackfly S, RGB
Camera
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Time Lens: Event-based Video Frame Interpolation

Stepan Tulyakov*!  Daniel Gehrig

Stamatios Georgoulis’  Julius Erbach’

Mathias Gehrig?  Yuanyou Li'  Davide Scaramuzza®
"Huawei Technologies, Zurich Research Center

2Dept. of Informatics, Univ. of Zurich and Dept. of Neuroinforma

Univ. of Zurich and ETH Zurich

(a) ground truth (b) events

(c) ours (d) BMBC (e) DAIN

Figure 1: Qualitative results comparing our proposed method, Time Lens, with DAIN (] and BMBC [24]. Our method can
interpolate frames in highly-dynamic scenes, such as while spinning an umbrella (top row) and bursting a balloon (bottom

row). It does this by combining events (b) and frames (a).
Abstract

State-of-the-art frame interpolation methods generate
intermediate frames by inferring object motions i the
image from consecutive key-frames. In the absence of
additional information, first-order approximations, ie.
optical flow, must be used, but this choice restricts the
types of motions that can be modeled. leading to errors

Time Lens, a novel method that leverages the advantages of
both, We extensively evaluate our method on three synthetic
and two real benchmarks where we show an up 10 5.21
dB improvement in terms of PSNR over state-of-the-art
frame-based and event-based methods. Finall release
a new large-scale dataset in highly dynamic scenarios.
aimed at pushing the limits of existing methods.

Time Lens++: Event-based Frame Interpolation with
Parametric Non-linear Flow and Multi-scale Fusion

Stepan Tulyakov* Alfredo Bochicchio® Daniel Gehrig? Stamatios Georgoulis'
YuanyouLi'  Davide Scaramuzza®
! Huawei Technologies, Zurich Research Center
* Dept. of Informatics, Univ. of Zurich and Dept. of Neuroinformatics, Univ. of Zurich and ETH Zurich

Everts Events

Timeiers (27) Propased metc Tmelers 27] Proposed maod  Timelans 27]
(@) robust fusion (b) fust & temporally consistent motion ~ (c) robustness 1o event sparsity
Figure 1. Compa the-art cvent- and image Time Lens 2], Our series of
ddr the | aches. First, it uses feature-level multi-scale fusion which is robust 1o artifacts in

the fused inmages (a). Second, it computes continuosis flow, parametrized by splines, which have inherent temporal consistency (b, bottom
right vs. lef) and can be efficiently sumpled, thereby significantly reducing computation for multi-frame interpolation (b). Finally, it
combincs images and cveals to gencrate flow, cven where fow events arc riggered, thereby mitigating artifacts s n (c).

Abstract by introducing multi-scale feature-level fusion and comput-
. ing one-shot non-linear inter-frame motion—which can be
Recently, video frame interpolation using a combination  efficiently sampled for image warping—from events and im-

of frame- and event-based cameras has surpassed tradi- ages. We also collect the first large-scale events and frames
tional image-based methods both in terms of isting of more than ing scenes with
and memory efficiency. However, current methods still suf- — depth variations, captured with a new experimental setup
fer from (i) brittle image-level fusion of complementary in- based on a beamsplitter. We show that our method improves
terpolation results, that fails in the presence of antifacts  the peconstruction quality by up to 0.2 dB in terms of PSNR
in the fused image. (ii) potentially temporally inconsistent  and up to 15% in LPIPS score.

and inefficient motion estimation procedures, that run for
every inserted frame and (iii) low contrast regions tha do
not irigger events, and thus cause events-only motion

Multimedia Material

Unifying Motion Deblurring and Frame Interpolation with Events

Xiang Zhang, Lei Yu'
Wauhan University, Wuhan, China.

y.wd}@whu. edu.

{xiangz,

Abstract

Slow shutter speed and long exposure time of frame-
based cameras often cause visual blur and loss of inter-
frame information. degenerating the overall quality of cap-
tured videas. To this end, we present a unified framework of
event-based motion deblurring and frame interpolation for
blurry video enhancement, where the extremely low latency
of events is leveraged 1o alleviate motion blur and facilitate
intermediate frame prediction. Specifically, the mapping re-
lation benween blurry frames and sharp latent images is first
predicted by a learnable double integral network. and a fu-
sion network is then proposed o refine the coarse results via
uilizing the information from consecutive blurry inputs and
the concurrent events. By exploring the mutual constraints
among blurry frames, latent images. and event streams,
we further propose a self-supervised learning framework
10 enable network training with real-world blurry videos
and events. Eviensive experiments demonstrate that our
method compares favorably against the state-of-the-art ap-
proaches and achieves remarkable performance on both
synthetic and real-world datasets. Codes are available at

LEVS

Time Lens

:

because of motion ambiguities and the erasure of intensity

Event-based Video Frame Interpolation with Cross-Modal Asymmetric
Bidirectional Motion Fields

Taewoo Kim, Yujeong Chae, Hyun-Kurl Jang, Kuk-Jin Yoon
Korea Advanced Institute of Science and Technology

{intelpro,y

Abstract

Video Frame Interpolation (VF1) aims to generate in-
termediate video frames between consecutive input frames.
Since the event cameras are bio-inspired sensors that only
encode brightness changes with a micro-second temporal
resolution, several works utilized the event camera to en-
hance the performance of VFI, However, existing methods
estimate bidirectional inter-frame motion fields with only
events or approximations, which can not consider the com-
plex motion in real-world scenarios. In this paper, we
propose a novel event-based VFI framework with cross-
modal asymmetric bidirectional motion field estimation. In
detail, our EIF-BiOFNet wtilizes each valuable charac-
teristic of the events and images for direct estimation of
inter-frame motion fields without any approximation meth-
ods. Moreover, we develop an interactive attention-based

frame synihesis network to efficiently leverage the comple-

‘mentary warping-based and synthesis-based features. Fi-
nally, we build a large-scale event-based VFI dataser, ERF-
XI70FPS, with a high frame rate, extreme motion, and
dynamic textures 10 overcome the limitations of previous
event-based VFI datasets. Extensive experimental results
validate that our method shows significant performance im-
provement over the state-of-the-art VFI methods on vari-
ous datasets. Our project pages are available at: ht tp
//github.com/intelpro/CBMNet

More paired training data, bigger and more expressive

models, better performance

eong, 3hg0001, kjyoon}@kaist.ac.kr

Fromes + Events  PSNR 16,29 dB PSNR 178 60

18) tnpuss (Overlay)  (b) SuperSioMa

PNRZLSSGR  PSNR2546dB  PSNRIS020D
(@) ABME e Timetens 0 ous

Figure 1. Qualitative comparison on the warped frame of inter-

frame motion ficlds. (b) and () estimate symmetrical inter-frame

motion fields. (d) and (c) estimate asymmetric motion ficlds using

only images and events, respectively. (f) Ours shows the best re-

sults using cross-modal asymmetric bidirectional motion fields.

motion-based VFI methods [7, 4, 222,29, 30] are pro-
posed thanks to the recent advance in motion estimation al-
gorithms [ 173, 14, 16,23, 39, 41]. For the inter-frame motion
field estimation, the previous works [ 7, 12, 2] estimate the
optical flows between consecutive frames and approximate
intermediate motion fields (17, 2%, 1] using linear [ 12, 2]
or quadratic [49] approximation assumptions. These meth-
ods often estimate the inaccurate inter-frame motion fields

when the motions between frames are vast or non-linear,
advarcaly affacti

r tha VET narfaemanca




Two Issues

More paired event + rgb data = more 5555

Larger models = more overfitting to specific cameras and interpolation rates

Time Lens CBMNet

In Domain:

Out of Domain:

CBMNet-Large Ours




Can we benefit fromnr

massive datasets a

highly expressive models without havir
to generate or train these
datasets/models ourselves?

nd




Our Contribution: Bring in the Big Guns!

Pretrained Video Diffusion Models
1. Internet-scale Data = Strong data prior (Generalization)

2. Video Diffusion = Denoising a video at once, temporal consistency

Image Credit: https://stability.ai/news/stable-video-diffusion-open-ai-video-model



Proposed Approach:

(i) Control a pretrained diffusion model with event guidance
(ii) Preprocess to preserve spatial and temporal resolution

(iii) Use video generation network to perform video interpolation

(i) R (ii)
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Proposed Approach:

(i) Control a pretrained diffusion model with event guidance

(i)

With a Uniform Random Choice of Denoising Step t

Z Trainable Copy

T“"@’
@

|

Events

ControlNet-style approach adapts a small event-to-latent encoder
while preserving the original video diffusion models weights.

Event Encoder

Encoder &M Representation

Leona

Noise
& at t

!m' ' Can learn to control diffusion model with only a limited amount of
training data, without the risk of forgetting the original video priors
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Training Objective
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Proposed Approach:

(ii) Preprocess to preserve spatial and temporal resolution

Per-tile Denoise and Fusion

Upsampled U led Denoised Tile Latents . . . . .
PTiles @) The diffusion models encoding process is inherently lossy

Inputs Tiles

Can preserve fine details by upsampling inputs before encoding
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Proposed Approach:

(iii) Use video generation network to perform video interpolation

(iii)

Events-based Video Denoising Step (EVDS)

OO e con Video diffusion model performs generation, not interpolation
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Representation

Denoised
5 Video Diffusion Latent . . . .
- : Mo To interpolate, run video model forward (from first frame) and in
i T— reverse (from last frame). Blend latents.

Event-based Video Interpolation

Two-side Fusion

Video Generation Video Interpolation
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Results: Generalizes to Extreme Interpolation without Fine Tuning

{o {o {0
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Input Events Time Reversal

Reference CBMNet-Large



Downsides?
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High-speed predictive wavefront sensing with event-cameras
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[Ziemann et al. 2024
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Event-based
Wavefront Sensing

Deep Predictive
Reconstruction

[Image Credit: Sky and Telescope Magazine]
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Dense 3D Reconstruction with Inverse Differentiable Rendering

Progressive Training DVS
Y ’ Blur-aware
/ / ' Projection }\ . Rasterizer
-.' \ " { Rasterizer &
/ .I\ ~ Differentiator |
4 L [ Adaptive
3D | Density Control
Gaussians
— Event Camera " Neutralization-aware |
<] RGB Camera (Optional) |‘ Accumulator
Operation Gradient
" Flow Flow

Event Stream

+ Blur Images

[Mahbub et al. 2023, Xiong et al. 2024]



3D Trajectory

---- Ground Truth
—— Recovered
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Event cameras + generative models
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CodedEvents: Optimal Point-Spread-Function Engineering for 3D-Tracking with Event Cameras CVPR 2024
Repurposing pre-trained video diffusion models for event-based video interpolation CVPR 2025. Sat. morning poster session



Acknowledgements

Sachin Shah Matthew Haoming  Jingxi Chen Sakshum Chahat
Cai Kulshrestha Deep Singh

A
Brandon Feng Tianfu Levi Dehao Cornelia Yiannis
Wang Burner Yuan Fermuller Aloimonos

MENT OF THp, ~i

N A, | A

> R P4Dolb
$) SAAB '@

SN WY s
I




3D Trajectory

---- Ground Truth
—— Recovered
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