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Frame-based Cameras are Problematic

2

High Latency Low Dynamic RangeRedundant

The past 60 years of research have been devoted to frame-

based cameras  … but they are not good enough!



Neuromorphic Vision
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*Figure courtesy of Yonghong Tian



Neuromorphic Camera Example 1: Event Camera

• Events are generated any time a single pixel sees a change in 
brightness larger than the threshold.
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• Event camera has novel sensor that measures only motion in 
the scene. First commercialized in 2008 under the name of 
Dynamic Vision Sensor (DVS). 
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Neuromorphic Camera Example 1: Event Camera

*Video courtesy of Elias Mueggler 
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Neuromorphic Camera Example 2: Spike Camera

• For a pixel, the light intensity is accumulated, if the accumulated

intensity reaches the dispatch threshold φ, a spike is fired and the

accumulator is reset.

න𝐼𝑑𝑡 ≥ 𝜙

[Zhu et al., CVPR’20]
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Neuromorphic Camera Example 2: Spike Camera

• The first spike camera is designed

by Peking university in 2018, with

spatial resolution of 400x250 and

temporal resolution of 40KHz.
Spike sequence

Spike array

Spike plane

High-speed train with relative speed of 700 km/hRaw data Recon.



http://camera.pku.edu.cn
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Camera Intelligence @ PKU



Rolling Shutter [CVPR 2022]Out-of-focus [CVPR 2023]

Camera Pipeline
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?
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CFA Demosaicing

color transforms compression

RAW Image
(mosaiced, linear, 10-16bit)

Analog 
Front-end

LFR、LDR
[CVPR 2023]

Final RGB Image
(nonlinear, 8-bit)

Scene

LDR [CVPR 2020、2023]



Camera Pipeline
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Scene

Out-of-focus [CVPR 2023]

Event Focal Stack

All-in-focus Imaging
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Motivation

SceneTraditional Camera

One depth in focus Focal Depth
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Motivation

Frame-based Focal Stack

Multiple depths in focus Focal Depths
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Scene



Event Focal Stack

Motivation

All depths in focus Focal Depths
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Scene



Previous Works

Image-based methods: High frequency information cannot be recovered due to 

the ill-posed nature of single image defocus deblur.

Defocused

Image
DRBNet IFANGround Truth APLKPAC

15Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]



Previous Works

Image focal stack: 

Requires careful operation & consumes long time;

Information is only collected at a discrete number of focal distances.

Scene

camera

Image Focal Stack

Focus Distance

Camera Output
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Scene Focus Distance

Camera Output

Focal Sweep

Previous Works

Focal sweep: 

By sweeping the focal point in a single exposure, information is 

collected from all depths, but the depth information is lost.

17

න d𝑡

camera



Problem Formulation

I𝑑1

ℰ𝑑1→𝑑2

The latent intensity frame changes as the focal point moves.

Events encode the logarithm change of latent intensity.

Latent Intensity Frame

？

Focal Distance

Scene

I𝑑2 I𝑑3

ℰ𝑑2→𝑑3

Event Focal Stack

log(I𝑑𝑗) = log(I𝑑𝑖) + ∑ℰ𝑑𝑖→𝑑𝑗
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Problem Formulation

I𝑑1

ℰ𝑑1→𝑑𝑘

Given a defocused image and the EFS, we can reconstruct the 

latent image focused at any distance.

Latent Intensity Frame

？

Focal Distance

Scene

I𝑑𝑘

Event Focal Stack

log(I𝑑𝑗) = log(I𝑑𝑖) + ∑ℰ𝑑𝑖→𝑑𝑗
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Method

Refocus timestamps

图例区

…

I𝑑0

: Inter stage data flow

: Inner stage data flow

: U-Net backbone with

bimodal fusion

: Stacking operation
Timestamp

{𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛}
for each patch

Reconstructed Sharpness

𝑡𝑖

Golden Search 

Iteration

I𝑑0 ℰ𝑑0→𝑑𝑖

I𝑑𝑖

EvRefocusNet

+

𝑡0
𝑡1

𝑡2

𝑡3

𝑡𝑛

…

I𝑑𝑛

I𝑑1

I𝑑3

I𝑑2

…

ST( 𝑒𝑘 𝑡1−Δ𝑡
𝑡1+Δ𝑡)

ST( 𝑒𝑘 𝑡2−Δ𝑡
𝑡2+Δ𝑡)

ST( 𝑒𝑘 𝑡3−Δ𝑡
𝑡3+Δ𝑡)

ST( 𝑒𝑘 𝑡4−Δ𝑡
𝑡4+Δ𝑡)

Image 
Stack

EvMergeNet

෍

*

Event 
Stack

IAIF

Image focal stack

All-in-focus Image

Single image + EFS

Golden search

Reconstruction

Merge
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Golden Search for Refocus Timestamps

Reconstructed Sharpness

𝑡𝑖

Golden Search Iteration

Step 1：For each patch of the image, we use the Golden Rate Search Algorithm 

to find the moment when it was in focus, getting N×N refocus timestamps (one 

for each patch).
21



Image Refocusing

Step 2：For each refocus timestamp, we use EvRefocusNet to reconstruct a 

refocused image from the input image + event focal stack, forming an image focal 

stack.

I𝑑0

Timestamp

I𝑑0 ℰ𝑑0→𝑑𝑖

I𝑑𝑖

EvRefocusNet

+

𝑡0
𝑡1

𝑡2

𝑡3

𝑡𝑛

…

I𝑑𝑛

I𝑑1

I𝑑3

I𝑑2

…

Image focal stack

Input defocused image

Input event focal stack
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Merging Focal Stack

23

Step 3：We predict merging weights with EvMergeNet, using image focal stack 

and events as input. Then, we merge the focal stack with weights to get all-in-

focus result.

…

I𝑑0

Timestamp

𝑡0
𝑡1

𝑡2

𝑡3

𝑡𝑛
…

I𝑑𝑛

I𝑑1

I𝑑3

I𝑑2

…

ST( 𝑒𝑘 𝑡1−Δ𝑡
𝑡1+Δ𝑡)

ST( 𝑒𝑘 𝑡2−Δ𝑡
𝑡2+Δ𝑡)

ST( 𝑒𝑘 𝑡3−Δ𝑡
𝑡3+Δ𝑡)

ST( 𝑒𝑘 𝑡4−Δ𝑡
𝑡4+Δ𝑡)

Image 
Stack

EvMergeNet

෍

*

Event 
Stack

IAIF All-in-focus Image

Image

focal stack

Event

focal stack



Training Dataset

• We use Blender to render high-frame-rate focal sweep videos & ground truth all-in-focus images.

• We use MS COCO dataset images to enrich object textures.

• We use DVS-Voltmeter [Lin et al., ECCV’22] to simulate events from focal sweep videos. To

prevent overfitting, we use random simulator parameters in each video.
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Test Dataset

• We use a hybrid camera system to capture real test data.

25



Results on Synthetic Data

Defocused Image
DRBNet IFAN KPAC APL

Ground TruthOursEventsDefocused Image

26Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]



Results on Synthetic Data

Events
DRBNet IFAN KPAC APL

Ground TruthOursEventsDefocused Image

27Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]



Results on Synthetic Data

Ours
DRBNet IFAN KPAC APL

Ground TruthOursEventsDefocused Image

28Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]



Results on Synthetic Data

Ground Truth
DRBNet IFAN KPAC APL

Ground TruthOursEventsDefocused Image

29Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]



Results on Synthetic Data

DRBNet
DRBNet IFAN KPAC APL

Ground TruthOursEventsDefocused Image

30Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]



Results on Synthetic Data

IFAN
DRBNet IFAN KPAC APL

Ground TruthOursEventsDefocused Image

31Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]



Results on Synthetic Data

KPAC
DRBNet IFAN KPAC APL

Ground TruthOursEventsDefocused Image

32Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]



Results on Synthetic Data

APL
DRBNet IFAN KPAC APL

Ground TruthOursEventsDefocused Image

33Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]



Results on Real Data

Defocused Image

DRBNet

IFAN

KPAC

APL

Ours

Events

Defocused Image

34

Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]



Results on Real Data

Events

DRBNet

IFAN

KPAC

APL

Ours

Events

Defocused Image
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Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]



Results on Real Data

DRBNet

DRBNet

IFAN

KPAC

APL

Ours

Events

Defocused Image
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Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]



Results on Real Data

IFAN

DRBNet

IFAN

KPAC

APL

Ours

Events

Defocused Image
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Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]



Results on Real Data

KPAC

DRBNet

IFAN

KPAC

APL

Ours

Events

Defocused Image
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Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]



Results on Real Data

APL

DRBNet

IFAN

KPAC

APL

Ours

Events

Defocused Image
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Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]



Results on Real Data

Ours

DRBNet

IFAN

KPAC

APL

Ours

Events

Defocused Image
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Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]



Refocusing on Synthetic Data

41

Input Events Input Image Refocus Results



Refocusing on Synthetic Data
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Input Events Input Image Refocus Results



Refocusing on Real Data
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Input Events Input Image Refocus Results



Refocusing on Real Data

45

Input Events Input Image Refocus Results



Conclusion

• We propose recording Event Focal Stacks (EFS) for high quality all-in-focus imaging.

• We design a three-stage algorithm to exploit the continuous information encoded in event 

focal stacks.
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Out-of-focus [CVPR 2023] Rolling Shutter [CVPR 2022]

Camera Pipeline
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White Balance

Denoise

?

Tone Reproduction

CFA Demosaicing

color transforms compression

RAW Image
(mosaiced, linear, 10-16bit)

LFR、LDR
[CVPR 2023]

Final RGB Image
(nonlinear, 8-bit)

Scene

Analog 
Front-end

LDR [CVPR 2020、2023]

Event-RGB HDR

HDR

Imaging



Learning Event Guided High Dynamic Range 
Video Reconstruction

Yixin Yang1,2 Jin Han3,4 Jinxiu Liang1,2 Imari Sato3,4 Boxin Shi1,2

1 National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University

2 National Engineering Research Center of Visual Technology, School of Computer Science, Peking University

3 Graduate School of Information Science and Technology, The University of Tokyo 

4 National Institute of Informatics

CVPR 2023
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Dynamic Range in the Real World

The Dynamic Range covered by a 

single image is limited.

High Exposure Image

Low Exposure Image

50

10-6 106

adaptation range of human eyes

common real scenes

indoor without light

outdoor shadow

sunlight

moonless sky



Event-based reconstruction

[Rebecq et al., CVPR’19] 

[Mostafavi et al., IJCV’21]

Related Works

Image-based reconstruction

• Merging multiple LDR images
[Debevec et al., SIGGRAPH’98] 

[Li et al., TIP’20]

[Chen et al., ICCV’21]

• Inverse tone mapping
[Eilertsen et al., SIGGRAPH Asia’17]

[Liu et al., CVPR’20]

DVS
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Event-guided reconstruction

[Han et al., CVPR’20]

[Wang et al., ECCV’20]

[Shaw et al., BMVC’22]



Event-based reconstruction

[Rebecq et al., CVPR’19] 

[Mostafavi et al., IJCV’21]

Related Works

Image-based reconstruction

• Merging multiple LDR images
[Debevec et al., SIGGRAPH’98] 

[Li et al., TIP’20]

[Chen et al., ICCV’21]

• Inverse tone mapping
[Eilertsen et al., SIGGRAPH Asia’17]

[Liu et al., CVPR’20]

DVS
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Event-guided reconstruction

[Han et al., CVPR’20]

[Wang et al., ECCV’20]

[Shaw et al., BMVC’22]



Event-based reconstruction

[Rebecq et al., CVPR’19] 

[Mostafavi et al., IJCV’21]

Related Works

Image-based reconstruction

• Merging multiple LDR images
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Event-guided reconstruction

[Han et al., CVPR’20]

[Wang et al., ECCV’20]

[Shaw et al., BMVC’22]



Event-based reconstruction

[Rebecq et al., CVPR’19] 

[Mostafavi et al., IJCV’21]

Related Works

Image-based reconstruction

• Merging multiple LDR images
[Debevec et al., SIGGRAPH’98] 

[Li et al., TIP’20]

[Chen et al., ICCV’21]

• Inverse tone mapping
[Eilertsen et al., SIGGRAPH Asia’17]

[Liu et al., CVPR’20]

DVS
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Event-guided reconstruction

[Han et al., CVPR’20]

[Wang et al., ECCV’20]

[Shaw et al., BMVC’22]



Event-based reconstruction

[Rebecq et al., CVPR’19] 

[Mostafavi et al., IJCV’21]

Related Works

Image-based reconstruction

• Merging multiple LDR images
[Debevec et al., SIGGRAPH’98] 

[Li et al., TIP’20]

[Chen et al., ICCV’21]

• Inverse tone mapping
[Eilertsen et al., SIGGRAPH Asia’17]

[Liu et al., CVPR’20]

DVS
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Event-guided reconstruction

[Han et al., CVPR’20]

[Wang et al., ECCV’20]

[Shaw et al., BMVC’22]



Problems in the Closest Work [Han et al., CVPR’20]

𝔼 = 𝐸𝑡 𝑖=1
𝑇

ℍ = 𝐻𝑡 𝑖=1
𝑇

𝕃 = 𝐿𝑡 𝑖=1
𝑇

reconstruction

chrominance 

compensation

Luminance fusion
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𝔼 = 𝐸𝑡 𝑖=1
𝑇

ℍ = 𝐻𝑡 𝑖=1
𝑇

𝕃 = 𝐿𝑡 𝑖=1
𝑇

reconstruction

Luminance fusion

chrominance

compensation

introducing artifacts

Problems in the Closest Work [Han et al., CVPR’20]
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Solution: HDRev-Net Pipeline

𝔼 = 𝐸𝑡 𝑖=1
𝑇

𝕃 = 𝐿𝑡 𝑖=1
𝑇

ℱE

ℱL ℍ = 𝐻𝑡 𝑖=1
𝑇

ℱH

𝐹E

𝐹L

𝑀L
(𝑙)

𝑀E
(𝑙)

multiplication

𝐹H

shared representation 

space

C ෨𝐹H

Conv

A
P

channel attention

Module 𝒜

Conv

C
C

o
n
v

C concatenation

event weighting layer 𝒲𝐸

image weighting layer 𝒲𝐿 convolutional blending layer ℬ

Conv

Conv Conv

average poolingAP

recurrent operation
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Motivation

𝔼 = 𝐸𝑡 𝑖=1
𝑇

ℍ = 𝐻𝑡 𝑖=1
𝑇

𝕃 = 𝐿𝑡 𝑖=1
𝑇

?

• Can we avoid explicit reconstruction which 

introduces artifacts from event-to-image methods?
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Motivation

𝔼 = 𝐸𝑡 𝑖=1
𝑇

ℍ = 𝐻𝑡 𝑖=1
𝑇

𝕃 = 𝐿𝑡 𝑖=1
𝑇

ℱE

ℱL

ℱH

?

?

• How to represent events and LDR frames in a shared 

latent space by two modality specific encoders?

• How to extract the common and complementary scene 

information from different modalities? 63



Multimodal Representation Alignment

𝔼 = 𝐸𝑡 𝑖=1
𝑇

ℍ = 𝐻𝑡 𝑖=1
𝑇

𝕃 = 𝐿𝑡 𝑖=1
𝑇

ℱE

ℱL

ℱH

?

𝐹E

• Perform the inter-modality reconstruction 

(event to image)
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Multimodal Representation Alignment

𝔼 = 𝐸𝑡 𝑖=1
𝑇

ℍ = 𝐻𝑡 𝑖=1
𝑇

𝕃 = 𝐿𝑡 𝑖=1
𝑇

ℱE

ℱL

ℱH

𝐹E

𝐹L

• Perform the intra-modality reconstruction 

(LDR image to HDR image)

fix the decoder 
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Multimodal Fusion

𝔼 = 𝐸𝑡 𝑖=1
𝑇

ℍ = 𝐻𝑡 𝑖=1
𝑇

𝕃 = 𝐿𝑡 𝑖=1
𝑇

ℱE

ℱL

ℱH

𝐹E

𝐹L

shared representation 

space

𝐹H

?

• How to provide a proper representation of HDR frames?
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Confidence Guided Multimodal Fusion

𝐹E

𝐹L

𝑀L
(𝑙)

𝑀E
(𝑙)

𝐹H

shared representation 

space

multiplication

the manually designed 

confidence map
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Confidence Guided Multimodal Fusion

𝐹E

𝐹L

𝑀L
(𝑙)

𝑀E
(𝑙)

multiplication

𝐹H

shared representation 

space

𝐹H

C ෨𝐹H

Conv

A
P

channel attention

Module 𝒜

Conv

C

C
o

n
v

C concatenation

event weighting layer 𝒲𝐸

image weighting layer 𝒲𝐿 convolutional blending layer ℬ

Conv

Conv Conv

average poolingAP
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Frame-based Pipeline

𝔼 = 𝐸𝑡 𝑖=1
𝑇

𝕃 = 𝐿𝑡 𝑖=1
𝑇

ℱE

ℱL ℍ = 𝐻𝑡 𝑖=1
𝑇

ℱH

𝐹E

𝐹L

𝑀L
(𝑙)

𝑀E
(𝑙)

multiplication

𝐹H

shared representation 

space

C ෨𝐹H

Conv

A
P

channel attention

Module 𝒜

Conv

C
C

o
n
v

C concatenation

event weighting layer 𝒲𝐸

image weighting layer 𝒲𝐿 convolutional blending layer ℬ

Conv

Conv Conv

average poolingAP

flickering artifacts brought 

by inconsistent textures  
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Temporal Context Encoding

Feature map

ConvLSTM layer

𝐿𝑡

ℱL
Hidden state

• Introduce temporal correlation to alleviate flickering and reduce noise
70



Hybrid Camera System
Input 

Scene radiance

Beam splitter

FLIR Chameleon 3 Color

𝐼

DAVIS346 Color
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Evaluation on Synthetic Data
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7.798 8.241 5.181
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E2VIDLiu et al.
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Li et al.
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Single image based HDR: [Liu et al., CVPR 2020] Two-exposure based HDR: [Li et al., TIP2020]

Event based HDR: [E2VID, TPAMI2019] Hybrid HDR: [Han et al., CVPR2020]
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Evaluation on Synthetic Data

Events

9.162

7.798 8.241 5.181

Ours

Han et al.
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Events

Li et al.
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74



Evaluation on Synthetic Data
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Evaluation on Synthetic Data
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Evaluation on Synthetic Data
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Evaluation on Synthetic Data
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Evaluation on Synthetic Data
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Conclusion

• We design a multimodal alignment strategy to bridge the gap between events and frames.

• We develop a confidence guided fusion module to complement events and LDR frames.

• We utilize the temporal correlation to alleviate the flickering effects for recovered HDR videos.
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RS correction

Rolling Shutter Effect



101

Motivation

Event + RS Frame



Event + RS Frame
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• Motion Estimation: 

High-speed events can address the challenge 

of fast and complicated motions.

• Occlusion Region Restoration:

Brightness changes encoded in events can be 

utilized to restore occluded regions.

RS correction

Motivation



RS + event

hybrid imaging system

EvUnroll Network

• EvUnroll is the first trial to improve RS correction with motion estimation and occlusion 

region restoration by involving event signals.   

• We build an RS-event hybrid camera to collect a real testing dataset.   

• EvUnroll restores high-frame-rate GS videos, and outperforms state-of-the-art RS 

correction methods on commonly used datasets.
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Contribution



RS frame DSUN [26] JCD [54] OursSUNet [8] 
116

Results on Real Data

Image-based method: [DSUN, CVPR 2020], [JCD, CVPR 2021], [SUNet, ICCV 2021]



Input RS frame Input event frame Ground truth

DSUN [26] JCD [54] Ours
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HFR GS Videos Results

Image-based method: [DSUN, CVPR 2020], [JCD, CVPR 2021]
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High-Speed HDR Video is Challenging

121

Short 

exposure

Long 

exposure
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Exposure Bracketing
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Short exposureReadout WaitMiddle exposureReadout Wait Long exposureReadout
time

𝑇 = 𝑇𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 + 𝑇𝑟𝑒𝑎𝑑𝑜𝑢𝑡 + 𝑇𝑤𝑎𝑖𝑡



Exposure Bracketing
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time

The colors are not recorded during the readout time and waiting time 

Limited the frame rate to dozens of frames per second
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Conventional camera: cannot capture fast motions 

Two adjacent 

RGB frames



Conventional Camera vs. Spiking Camera
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Spiking camera: capturing continuous fast motions in high dynamic range

Spike signal
Potential information for 

recovering high frame rate (HFR) and 

high dynamic range (HDR) video

Conventional camera: cannot capture fast motions 

Two adjacent 

RGB frames



Hybrid Camera System
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time
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1000 FPSHFR&HDR video
…

…
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Output
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Spike signal

Spike frame Optical flow
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Short exposure Reduce noiseSpike frame

Optical flow



Methodology

132

Middle exposure Motion deblurringSpike frame

Optical flow
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Long exposure

Motion deblurring

Compensate clipped regionsSpike frame

Optical flow



Methodology
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Recover 1000 FPS color videoSpike frame

Optical flow

Alternating-exposure frames

Short exposure Middle exposure Long exposure



1000 FPS HDR Video Pipeline
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Step ① Spike preprocessing 

Step ② RGB frame processing

Step ③ Merging into HFR video

The pipeline of the proposed solution. 
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(c)

Step ① Spike preprocessing

The pipeline of the proposed solution. 

• Estimate optical flow

• Reconstruct spike frames
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(c)

Step ② RGB frame processing

• How can the deblurring problem be resolved

using the rich temporal information provided by

spike trains?

• How many sharp images can be obtained from

a blurry image?

The pipeline of the proposed solution. 
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(c)

The pipeline of the proposed solution. 

Spike frames

Middle-exposure image

Step ② RGB frame processing

• How can the deblurring problem be resolved

using the rich temporal information provided by

spike trains?
- Removing blurs in the middle-exposure image using

blur-free spike fames.
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(c)

The pipeline of the proposed solution. Adjacent short-exposure image

Step ② RGB frame processing

• How can the deblurring problem be resolved

using the rich temporal information provided by

spike trains?
- Warping the adjacent short-exposure image to align    

with the spike frames guided by optical flow.
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(c)

Step ② RGB frame processing

• How many sharp images can be obtained from a

blurry image?

- Middle-exposure (4𝑡𝑠) and long-exposure (12𝑡𝑠)
images are recovered at each 𝑡𝑠 time stamp.

The pipeline of the proposed solution. 
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(c)

Step ③ Merging into HFR video
interval time interval time

The pipeline of the proposed solution. 

• How to obtain the missing color frames 

within the interval time?
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Step ③ Merging into HFR video
interval time interval time

The pipeline of the proposed solution. 

• How to obtain the missing color frames 

within the interval time?
- For a time stamp 𝑖, warp the closest color  

frames with optical flow from spikes.
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• Build a CNN-RNN based HFR&HDR video reconstruction network for refinement.
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Network input

• The two interpolated color frames

• The reconstructed image of the previous step

• 5 spike frames
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• The merging module consists of three encoders, which 

are respectively designed for feature extraction.
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• Use a decoder to reversely map deep features 

to the current output HDR frame. 
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iPhone 13 (240 FPS) Mi 10 (120 FPS)



Evaluation on Real Data
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Input (RGB & spike) Ours Phantom camera (1000  FPS)



Camera Pipeline
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White Balance

Denoise

?

Tone Reproduction

CFA Demosaicing

color transforms compression

RAW Image
(mosaiced, linear, 10-16bit)

Out-of-focus [CVPR 2023]

Analog 
Front-end

LFR、LDR
[CVPR 2023]

Final RGB Image
(nonlinear, 8-bit)

Rolling Shutter [CVPR 2022]

Scene

LDR [CVPR 2020、2023]

All-in-focus Imaging

[CVPR 2023]

HDR Imaging

[CVPR 2023]

GS Imaging

[CVPR 2022]

HDR HFR Imaging

[CVPR 2023]



http://camera.pku.edu.cn

A Computational Photography

Laboratory at Peking University

(Super)

NeuCAP
Neuromorphic Camera Aided Photography



Thank You!
Q and A

http://camera.pku.edu.cn

A Computational Photography

Laboratory at Peking University

Boxin Shi
shiboxin@pku.edu.cn


