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Motivation

Where do the in-efficiencies come from?
Algorithms Sensors/Hardware Architecture Circuits and Devices
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Comparison with Biological Systems

⮚ Biological systems still possess a level of functionality that is 
unmatched in artificial systems

⮚ Consider a reactive behavior of a Fruit fly (~100K neurons)
o Fly fast while avoiding obstacles in cluttered environments
o Dodge dynamic obstacles and active attacks

Flying monkey UAV, UPenn
~1-2W compute

Fruit fly
~uW compute

VS

Dickinson’s lab Caltech
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The Big Picture

Diverse learning 
modalities (Supervised, 
reinforcement, explainable, 
spike-based hybrid 
learning)

* Based on cumulative TOPS 
required for visual SLAM, 
depth map generation and 
object detection @ 30fps in 
under 0.5W  

Enable autonomous intelligent systems by improving the compute 

efficiency and robustness of cognitive tasks through cross-layer 

innovations from algorithms to hardware

Exemplary application driver: Autonomous drones

Goal:
Vision-based navigation 
(localization, mapping, 
odometry, obstacle 
avoidance, path planning)

Compute (Hardware) 
efficiency (Need > 100X 
improvement in energy-
delay over current state-
of-the-art*) 

Robustness 
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Cross-Layer Design: Sensors, Algorithms, Hardware

Frames Events Sensor-Fusion

Traditional GPU Analog IMCDigital IMC

Object 
Detection

Optical Flow / 
Depth

Segmentation

Tracking

Localization

Lightweight SNNs

Hybrid SNN-ANN

Inter-frame latency 

Feature 
Extractor

Object 
detector

Input
Fully 

Connected

 Frame Pipeline – Conventional Object Detector

Prey

Ego-
Event Pipeline – Neuro-inspired Ego-motion Filtering

.

Vertical PositionIMU Input

DVS Input Horizontal Position

Event Stream

Time
X

Y

 
2-BL/1-SL RRAM

W
L 

D
ri

ve
rs

BL Drivers

..

...

...

WL[0]

WL[1]

SL[0]BL[0] BL[1]

..

Error Correction

Shift and Add

6-bit SAR ADC

Hardware Accelerators

5



6
SHRISTI BISWAS

Modalities…..

NETWORK 
ARCHITECTURES

TRAINING
COMPLEXITY

HARDWARE 
COMPUTATIONAL 

EFFICIENCY

Current GPUs

Emerging Devices

NVIDIA Jetson TX-2

SNN Accelerator

HW/SW 
codesign with 
ADC-Less IMC

Adaptive-SNR 
Sparsity aware CiM

On-Chip Learning 

ANN Architectures

SNN 
Architectures

Hybrid 
Architectures
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Tradeoffs: Starting with Sensors….

EnergyLatency

AccuracyMemory

The choice of sensors dictates 
the choice of any of the 

modalities

Event-based Cameras Frame-based Cameras
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Frame vs Event-based Cameras

Event-based Cameras

Mueggler et al. IROS 2014

Frame-based Cameras

Motion Blur

HDR

Time

High temporal resolution

High dynamic range
Low-Power

TimeEvent

Asynchronous events naturally fit with SNNs

Spiking Neural Network (SNN)

Encoder Decoder

Analog Neural Network (ANN)
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Our Approaches

14

Adaptive-FlowNet: Fully Spiking ArchitectureFusion-FlowNet: Sensor-fusion

C. Lee, et. al., Spike-FlowNet:…, ECCV 2020
C. Lee, A. Kosta, and K. Roy., Fusion-FlowNet:..., ICRA 2022

Model with all spiking layers
• Directly compatible with event inputs
• Capture temporal information
• Combat vanishing gradient with adaptive 

spiking neuronal model 

Event inputs
• Data at high temporal but low spatial resolution

Frame inputs
• Data at high spatial but low temporal resolution

Combined inputs for a  better flow estimation

Fire-FlowNet: Lightweight Architecture for the Edge

• Highly energy efficient and low latency 
implementation

• Suitable for fast inference on the resource 
constrained edge

13M params7.5M params

60K params
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Visualization – Flow Comparison on MVSEC

Alex Zihao Zhu, Dinesh Thakur, Tolga Ozaslan, Bernd Pfrommer, Vijay Kumar and Kostas Daniilidis . "The multivehicle stereo event camera dataset: An event camera dataset 
for 3D perception." IEEE Robotics and Automation Letters 3.3 (2018): 2032-2039.
Chankyu Lee, Adarsh Kosta and Kaushik Roy. "Spike-flownet: event-based optical flow estimation with energy-efficient hybrid neural networks." European Conference on 
Computer Vision. Springer, Cham, 2020.

https://ieeexplore.ieee.org/document/8288670
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123740358.pdf


18
SHRISTI BISWAS

Tradeoffs

EnergyLatency

Different network architectures 
differ in Accuracy and Energy 

Consumption 

Accuracy

Kosta, Roy, ICRA 2023
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HALSIE: Hybrid Approach to Learning 
Segmentation by Simultaneously Exploiting Image 
and Event Modalities
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Cross-Layer Design: Sensors, Algorithms, Hardware
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DOTIE: Detecting Objects through 
Temporal Isolation of Events

Events do not contain photometric 
characteristics such as light intensity and 

texture
Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement." arXiv preprint arXiv:1804.02767 (2018).
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Our single layer network can isolate events 
corresponding to moving objects and detect objects 

accurately, with low latency and energy 
consumption

Nagaraj, Liyanagedera, Roy, 
“DOTIE: …”, ICRA 2023

https://arxiv.org/abs/1804.02767
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Demonstration of detecting speeds of objects using 
the DOTIE Algorithm
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Demonstration of detecting speeds of objects using 
the DOTIE Algorithm

Nagaraj, Liyanagedera, Roy, 
“DOTIE: …”, ICRA 2023
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Aim: To minimize latency in reactive behaviors such as:

• Interception • Time to collision

EV-Catcher: Taking Inspiration from Nature

Kostas Daniilidis, 
UPenn
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Hardware Architecture

➢Circuits and architectures that can efficiently implement the 
algorithms (SNNs and ANNs): need for hybrid systems
oNear-/In-Memory Computing for MVMs
oApproximate and stochastic hardware
oNeuromorphic devices and interconnects

Accelerators

In-memory 
computingApproximate 

& Stochastic 
Hardware

Neuromorphic 
Devices

Multicores/GPUs

~104

Energy
Gap

36



Hardware Architecture: CiM
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Chakraborty et. al. Resistive Crossbars as Approximate Hardware Building Blocks for 
Machine Learning: Opportunities and Challenges, Proc. of IEEE, 2020
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Hardware Implementations
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Hardware Architecture: Jetson TX-2

`

Example optical flow prediction

NVIDIA Jetson TX-2

Gray image Spike image Flow prediction



Performance estimation of optical flow networks

➢Networks mapped to GPU cores in 
Jetson TX2 at max frequency
➢ Low model complexity doesn’t 
translate to better inference 
performance!

`

Observations
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Hardware Implementations
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Energy Efficient DNN: Adaptive-SNR Sparsity-Aware 
CiM Core with Load Balancing Support

➢ Hierarchical Microarchitecture with Sparsity-aware Bit-Serial Compute Units and 
reconfigurable ADC

➢ Row Gating based on SNR requirements of DNN workloads
➢ On-chip row and column re-arrangement hardware support for load balancing

M. Ali, “A 35.5-127.2 tops/w dynamic sparsity-aware reconfigurable-precision compute-in-
memory sram macro for machine learning”, IEEE Solid-State Circuits Letters, 2021

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=oi3cWskAAAAJ&sortby=pubdate&citation_for_view=oi3cWskAAAAJ:RHpTSmoSYBkC


Chip Results & Summary

Chip Summary

Technology (nm) 65

Voltage (V) 1.2

Frequency (MHz) 100.806

Input/Weight Precision 4b/4b, 4b/8b, 8b/4b, 8b/8b

Output Precision 18b/22b

Total Area (mm2) 7

CiM Macro Area (mm2) 0.036

Total Digital SRAM (KB) 90.2

CiM SRAM (KB) 16

Performance (1b/1b operation) 117-552 GOPs

CIFAR-10 Accuracy (Resnet-20) 91.8%

Chip Energy Efficiency (8b/8b operation) 1.4-6.7 TOPs/W
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65 nm Spiking Neural Network (SNN) Accelerator based on 
in-memory Processing: Suitable with DVS Camera

• Motivation (DVS 
input…)

▪ Spiking Neural Networks 
(SNNs) can perform 
sequential learning 
tasks efficiently using spike-
based 
membrane potential (Vme
m) accumulation 
over several timesteps.

▪ However, the movement 
of Vmems creates 
additional memory 
accesses making data-
transfer a bottleneck.

▪ Additionally, the sparsity in 
binary spike inputs can be 
leveraged for efficiency.
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Conventional Approach: Proposed Approach:

A. Agrawal et. al., “IMPULSE: A 65nm Digital Compute-in-Memory Macro with Fused Weights and 
Membrane Potential for Spike-based Sequential Learning Tasks”, IEEE Solid-State Circuits Letters, 2021

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=oi3cWskAAAAJ&sortby=pubdate&citation_for_view=oi3cWskAAAAJ:iH-uZ7U-co4C
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65 nm Spiking Neural Network (SNN) Accelerator 
based on in-memory Processing

Results

Fig. 1: Chip layout
Area = 3.12 mm^2

1.56mm
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Both the performance and 
energy efficiency 

increase with increasing 
sparsity (zero-skipping) 

and decreasing bit-
precision (more 

parallelism).

Component-wise energy distribution at 75% and 
99% input spike sparsity. Energy dominated by CIM 

even at very high sparsity.
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Hardware Architecture: CiM
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Energy and latency of the IMC architectures

Cross-architecture Comparison: FireFlowNet
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Both IMC architectures (IMPULSE 
and ADC-Less) require less energy 
consumption compared to the 
Jetson platform.
In addition, the ADC-Less can 
improve the latency enabling real-
time inference.
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ADC-Less IMC energy and latency analysis: Spike-FlowNet

36-76x less energy 
consumption and 7.8–12x 
faster than Jetson platform.

1.9-2.5x less energy 
consumption and 8.9–12.6x faster
than a conventional HP-ADC IMC.
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Hardware-aware training for the ADC-Less IMC

Full precision ADC-Less training

Optical flow prediction of the Fully-Spiking FlowNet (FS-FN) during the 
Hardware-aware training.

Model IN1 – AEE IN2 – AEE IN3 - AEE Training

FSFN 0.82 1.21 1.07 Full-precision

FSFN 0.88 1.39 1.18 ADC-Less training

Spike-FlowNet 0.84 1.28 1.11 Full-precision

Performance on MVSEC dataset (dt=1) [AEE lower is better]
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➢Intersection over union (IoU) between object detection bounding boxes 
of ~81% from single car events dataset
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SHRISTI BISWAS

Results of Implementing DOTIE on Loihi

Example Frame 1 Example Frame 2 Example Frame 3

Raw Events

CPU/GPU
(Framework: PyTorch)

Loihi Simulator
(Framework: Lava)
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Key Takeaways – Sensors and Algorithms

Sensor-fusion of Frame and Event data exploits
their complementary benefits improving overall 
performance

Hybrid SNN-ANN models naturally handle event 
data while preserving performance benefits and 
ease of training of ANNs

Fully-Spiking Architectures better capture 
timing information and lead to lightweight 
models suitable for the edge

Next-generation datasets will enable movement 
of simulated and example problems into real 
world data

These techniques improve the current state-of-the art, both in terms of 

accuracy and efficiency on several tasks for vision-based autonomous 

navigation

HYBRID

SNN

EventFrame Fusion
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Key Takeaways – Efficient Hardware Platforms

Adapting to SNR and exploiting sparsity in a 
workload can significantly improve the overall 
performance of IMC architectures.

Specialized hardware accelerators for Spiking 
Neutral Networks focused on reducing the 
membrane potential overhead can give better 
performance and energy benefits.

Hardware/Software co-design approaches can 
lead to energy-efficient implementations based 
on co-optimization processes.

Hardware architectures and design techniques enables the deployment of

energy efficient vision-based autonomous navigation
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