RE-THINKING COMPUTING WITH NEURO-INSPIRED LEARNING: ALGORITHMS TO HARDWARE

Kaushik Roy

kaushik@purdue.edu Elmore School of Electrical and Computer Engineering Purdue University

Motivation

Google Edge TPU

Retinanet DNN* on a smart glass

Performance				
Frames/sec	13.3			
Battery Life				
Energy/op	0.5 pJ/op			
Energy/frame	0.15 J/frame			
Time-to-die (2.1WH)	64 mins			

*300 GOPs/inference

Where do the in-efficiencies come from?AlgorithmsSensors/Hardware ArchitectureCircuits and Devices

ML application trends (Training)

Comparison with Biological Systems

Biological systems still possess a level of functionality that is unmatched in artificial systems

> Consider a reactive behavior of a Fruit fly (~100K neurons)

- Fly fast while avoiding obstacles in cluttered environments
- Dodge dynamic obstacles and active attacks

Flying monkey UAV, UPenn ~1-2W compute

Fruit fly ~uW compute

Dickinson's lab Caltech

The Big Picture

Enable autonomous intelligent systems by **improving the compute efficiency and robustness of cognitive tasks** through cross-layer innovations from algorithms to hardware

Exemplary application driver: Autonomous drones

Cross-Layer Design: Sensors, Algorithms, Hardware

Modalities.....

Cross-Layer Design: Sensors, Algorithms, Hardware

Cross-Layer Design: Sensors, Algorithms, Hardware

Tradeoffs: Starting with Sensors....

Frame vs Event-based Cameras

Cross-Layer Design: Sensors, Algorithms, Hardware

Our Approaches

Event inputs

Data at high temporal but low spatial resolution

Frame inputs

• Data at high spatial but low temporal resolution

Combined inputs for a better flow estimation

Adaptive-FlowNet: Fully Spiking Architecture

SNN

Model with all spiking layers

- Directly compatible with event inputs
- Capture temporal information
- Combat vanishing gradient with adaptive spiking neuronal model

C. Lee, A. Kosta, and K. Roy., Fusion-FlowNet:..., ICRA 2022

Full-fledged ANN

Fusion-FlowNet

Alex Zihao Zhu, Dinesh Thakur, Tolga Ozaslan, Bernd Pfrommer, Vijay Kumar and Kostas Daniilidis . "The multivehicle stereo event camera dataset: An event camera dataset for 3D perception." IEEE Robotics and Automation Letters 3.3 (2018): 2032-2039.

Chankyu Lee, Adarsh Kosta and Kaushik Roy. "Spike-flownet: event-based optical flow estimation with energy-efficient hybrid neural networks." *European Conference on* Computer Vision, Springer, Cham, 2020.

Spike-FlowNet

Tradeoffs

51x Lower Compute Energy

Similar error as Base-ANN

1.05

0.48

0.95

1031.1

23.4

51x

26x

Kosta, Roy, ICRA 2023 FireFlow-SNN

Micro-SNN

0.93

0.27

0.057

14x

48x

142x

Cross-Layer Design: Sensors, Algorithms, Hardware

HALSIE: Hybrid Approach to Learning Segmentation by Simultaneously Exploiting Image and Event Modalities

Cross-Layer Design: Sensors, Algorithms, Hardware

DOTIE: Detecting Objects through Temporal Isolation of Events

threshold

Time (t)

membrane

otential

Output

Our single layer network can isolate events corresponding to moving objects and detect objects accurately, with low latency and energy consumption

Events do not contain photometric characteristics such as light intensity and texture

Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement." arXiv preprint arXiv:1804.02767 (2018).

Nagaraj, Liyanagedera, Roy, "DOTIE: ...", ICRA 2023

Demonstration of detecting speeds of objects using the DOTIE Algorithm

Demonstration of detecting speeds of objects using the DOTIE Algorithm

operating at

3 speeds

Nagaraj, Liyanagedera, Roy, "DOTIE: ...", ICRA 2023

EV-Catcher: Taking Inspiration from Nature

<u>Aim</u>: To minimize *latency* in *reactive* behaviors such as:

Interception
Time to collision

Kostas Daniilidis, UPenn

Cross-Layer Design: Sensors, Algorithms, Hardware

Hardware Architecture

Circuits and architectures that can efficiently implement the algorithms (SNNs and ANNs): need for hybrid systems
Near-/In-Memory Computing for MVMs
Approximate and stochastic hardware
Neuromorphic devices and interconnects

Hardware Architecture: CiM

Efficient MVM

Hardware Architecture: CiM

Efficient MVM

Spatially Distributed Cores

Hardware Implementations

Hardware Architecture: Jetson TX-2

NVIDIA Jetson TX-2

Example optical flow prediction

Gray image

Spike image

Flow prediction

Performance estimation of optical flow networks

Hardware Implementations

Energy Efficient DNN: Adaptive-SNR Sparsity-Aware CiM Core with Load Balancing Support

- Hierarchical Microarchitecture with Sparsity-aware Bit-Serial Compute Units and reconfigurable ADC
- Row Gating based on SNR requirements of DNN workloads
- On-chip row and column re-arrangement hardware support for load balancing

47

M. Ali, "A 35.5-127.2 tops/w dynamic sparsity-aware reconfigurable-precision compute-inmemory sram macro for machine learning", IEEE Solid-State Circuits Letters, 2021

Chip Results & Summary

Chip Summary				
Technology (nm)	65			
Voltage (V)	1.2			
Frequency (MHz)	100.806			
Input/Weight Precision	4b/4b, 4b/8b, 8b/4b, 8b/8b			
Output Precision	18b/22b			
Total Area (mm ²)	7			
CiM Macro Area (mm ²)	0.036			
Total Digital SRAM (KB)	90.2			
CiM SRAM (KB)	16			
Performance (1b/1b operation)	117-552 GOPs			
CIFAR-10 Accuracy (Resnet-20)	91.8%			
Chip Energy Efficiency (8b/8b operation)	1.4-6.7 TOPs/W			

Hardware Implementations

65 nm Spiking Neural Network (SNN) Accelerator based on in-memory Processing: Suitable with DVS Camera

- Motivation (DVS input...)
- Spiking Neural Networks (SNNs) can perform sequential learning tasks efficiently using spikebased membrane potential (Vme m) accumulation over several timesteps.
- However, the movement of Vmems creates additional memory accesses making datatransfer a bottleneck.
- Additionally, the sparsity in binary spike inputs can be leveraged for efficiency.

<u>A. Agrawal et. al., "IMPULSE: A 65nm Digital Compute-in-Memory Macro with Fused Weights and</u> <u>Membrane Potential for Spike-based Sequential Learning Tasks</u>", IEEE Solid-State Circuits Letters, 2021

65 nm Spiking Neural Network (SNN) Accelerator based on in-memory Processing

Hardware Implementations

Hardware Architecture: CiM

Efficient MVM

Energy and latency of the IMC architectures

Both IMC architectures (IMPULSE and ADC-Less) require less energy consumption compared to the Jetson platform. In addition, the ADC-Less can improve the latency enabling realtime inference.

– ADC-Less IMC energy and latency analysis: Spike-FlowNet

36-76x less energy consumption and **7.8–12x faster** than Jetson platform.

1.9-2.5x less energy consumption and **8.9–12.6x faster** than a conventional HP-ADC IMC.

Hardware-aware training for the ADC-Less IMC

Optical flow prediction of the Fully-Spiking FlowNet (FS-FN) during the Hardware-aware training.

Full precision

ADC-Less training

Performance on MVSEC dataset (dt=1) [AEE lower is better]

Model	IN1 – AEE	IN2 – AEE	IN3 - AEE	Training
FSFN	<u>0.82</u>	<u>1.21</u>	<u>1.07</u>	Full-precision
FSFN	0.88	1.39	1.18	ADC-Less training
Spike-FlowNet	0.84	1.28	1.11	Full-precision

Hardware Implementations

Results of Implementing DOTIE on Loihi

Intersection over union (IoU) between object detection bounding boxes of ~81% from single car events dataset

Key Takeaways – Sensors and Algorithms

Frame

Event

Fusion

Sensor-fusion of Frame and Event data exploits their complementary benefits improving overall performance

Hybrid SNN-ANN models naturally handle event data while preserving performance benefits and ease of training of ANNs

Fully-Spiking Architectures better capture timing information and lead to lightweight models suitable for the edge

These techniques improve the current state-of-the art, both in terms of accuracy and efficiency on several tasks for vision-based autonomous navigation

world data

Key Takeaways – Efficient Hardware Platforms

Adapting to SNR and exploiting sparsity in a workload can significantly improve the overall performance of IMC architectures.

Specialized hardware accelerators for Spiking Neutral Networks focused on reducing the membrane potential overhead can **give better performance and energy benefits**.

Hardware/Software co-design approaches can lead to energy-efficient implementations based on co-optimization processes.

Hardware architectures and design techniques enables the deployment of energy efficient vision-based autonomous navigation