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Deep Learning for Event Camera
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Deep Learning for Event Camera

* But can we make event representations that are also efficient, and operate at high temporal resolution?

* Dense representations lead to redundant processing when
* No events are present
* When new events arrive in the time window
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[1] Messikommer & Gehrig et al., “Event-based Asynchronous Sparse Convolutional Networks ”, ECCV 2020



Why improve efficiency?

* Computational efficiency is the main source of latency for event-based vision

* Reducing it can reduce the latency to minimal values |
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Event-based Graph Neural Networks

* Process events as spatio-temporally evolving graphs
* Sparser than Histograms
» Efficient construction and event insertion into graph

* Does not discard time information .
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Event-based Graph Neural Networks

Voxel Pooling

Spline Convolution

* During training, the GNN processes events synchronously.

e During testing, deploy GNN asynchronously: First initialize densely, then update only small subgraph
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Performance vs. Efficiency

Genl Automotive Detection Dataset [5]
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Combining with Images

* Event cameras are “blind”, when no motion is present, and contain only binary information

* Combining them with images helps to address these issues.

* Directed feature sharing between CNN and GNN enables async. reuse of image features

Input Events and Images Object Detections

using events and images boosts worst-case mAP by 2.6 mAP over purely image-based

[1] Gehrig et al., “Pushing the Limits of Asynchronous Graph-based Object Detection with Event Cameras”, arXiv 2022, ongoing research
[2] Gehrig et al., “Low-latency Interframe Object Detection with Event Cameras”, submitted



Bandwidth Latency Tradeoftf

high framerate images

low framerate images

@._ images and events
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Results
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High-Rate Detections

Boost of worst-case mAP by 2.6 mAP over purely image-based at same bandwidth



200 x slower

Event and Image-based: EAGR (this work) Image-based: YOLOX [3]
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Event- and Images-based Object Detector

Event and Image-based: EAGR (this work) Image-based: YOLOX [1]




Qualitative Results: HDR scenarios

Event and Image-based: DAGr (this work) Image-based: YOLOX [1]

[1] Ge et al. “YOLOX: Exceeding YOLOX Series in 2021”, arXiv, 2023



Qualitative Results: HDR scenarios
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Event and Image-based: DAGr (this work) Image-based: YOLOX [1]

[1] Ge et al. “YOLOX: Exceeding YOLOX Series in 2021”, arXiv, 2023



https://dsec.ifi.uzh.ch/dsec-detection/

Thank you for listening!

18



