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Deep Learning for Event Camera
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Deep Learning for Event Camera
• But can we make event representations that are also efficient, and operate at high temporal resolution?

• Dense representations lead to redundant processing when 

• No events are present 

• When new events arrive in the time window

Events in Space-Time Event Histogram RGB Camera

[1] Messikommer & Gehrig et al., “Event-based Asynchronous Sparse Convolutional Networks ”, ECCV 2020



Why improve efficiency?
• Computational efficiency is the main source of latency for event-based vision

• Reducing it can reduce the latency to minimal values
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Event-based Graph Neural Networks

• Process events as spatio-temporally evolving graphs

• Sparser than Histograms

• Efficient construction and event insertion into graph

• Does not discard time information

Training: On full spatio-temporal graphs Testing: Event-based and sparse
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Event-based Graph Neural Networks

• During training, the GNN processes events synchronously.

• During testing, deploy GNN asynchronously: First initialize densely, then update only small subgraph
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Performance vs. Efficiency

+16,3 mAP
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Gen1 Automotive Detection Dataset [5]

[1] Messikommer et al., “Event-based Asynchronous Sparse Convolutional Networks”, ECCV 2020
[2] Li et al., “Graph-based Asynchronous Event Processing for Rapid Object Recognition”, ICCV 2021
[3] Schaefer & Gehrig et al., “Asynchronous Event-based Graph Neural Networks”, CVPR 2022

[4] Gehrig et al., “Pushing the Limits of Asynchronous Graph-based Object Detection with Event Cameras”, arXiv 2022
[5] de Tournemire et al., “A Large Scale Event-based Detection Dataset for Automotive”, arXiv, 2020

~1000 x



Combining with Images

• Event cameras are “blind”, when no motion is present, and contain only binary information

• Combining them with images helps to address these issues.

• Directed feature sharing between CNN and GNN enables async. reuse of image features

CNN

Async. 
GNN

Object DetectionsInput Events and Images

[1] Gehrig et al., “Pushing the Limits of Asynchronous Graph-based Object Detection with Event Cameras”, arXiv 2022, ongoing research
[2] Gehrig et al., “Low-latency Interframe Object Detection with Event Cameras”, submitted

using events and images boosts worst-case mAP by 2.6 mAP over purely image-based
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High-Rate Detections

Results

Boost of worst-case mAP by 2.6 mAP over purely image-based at same bandwidth



Event and Image-based: EAGR (this work) Image-based: YOLOX [3]
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Event and Image-based: EAGR (this work) Image-based: YOLOX
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100 x slower



Event and Image-based: EAGR (this work) Image-based: YOLOX [1]

Event- and Images-based Object Detector



[1] Ge et al. “YOLOX: Exceeding YOLOX Series in 2021”, arXiv, 2023

Event and Image-based: DAGr (this work) Image-based: YOLOX [1]

Qualitative Results: HDR scenarios



early detection with 
events and frames

late detection
with images alone

[1] Ge et al. “YOLOX: Exceeding YOLOX Series in 2021”, arXiv, 2023

Event and Image-based: DAGr (this work) Image-based: YOLOX [1]
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Qualitative Results: HDR scenarios



Thank you for listening!
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https://dsec.ifi.uzh.ch/dsec-detection/


