

Within-Camera Multilayer Perceptron DVS Denoising OPR June 18, 2023 EVNTVIS

Antonio Rios-Navarro^{2,1}, Shasha Guo^{3,1}, (Aba) G. Abarajithan⁵, (Vijay) K. Vijayakumar⁵, Alejandro Linares-Barranco², Thea Aarrestad⁴, Ryan Kastner^{5,1}, and Tobi Delbruck¹ ¹ Sensors Group, Institute of Neuroinformatics, Univ. of Zurich and ETH Zurich, Switzerland, ² Robotic and Tech of Computers Group, SCORE lab, ETSI-EPS, Univ. of Seville, Spain ³ College of Electronic Engineering, National University of Defense Technology (NUDT), China, ⁴ Inst. of Particle Physics, ETH Zurich, Switzerland, ⁵ Univ. of California, San Diego, USA

and Prof. Shih-Chii Liu (INI), Prof. Mingu Kang (UCSD), and anonymous reviewers for their support and suggestions to improve the paper.

It could open new areas of always-on event camera application under scavenged and battery power.

MLPF fits into small FPGA or small ASIC area and has 40 ns latency. Memory for the 2D timestamp image dominates cost.

ble 2. FOI	As of the ha	rdware N	ILPFs f	or Table 1 p	arameters.		
 2 y old Xlinx Zyn	⁼PGA q XC7Z100	<mark>Mode</mark> Xlinx	rn <mark>\$40</mark> Zynq	<mark>0 FPGA</mark> U+ ZU3CG	Cheap digital process <u>65nm ASIC. Vdd=1.08V</u>		
100	MHz		236 l	MHz	$833\mathrm{MHz}$		
eycles	ns	cycles	S	ns	cycles 1	les ns	
7	70	7		~ 30	30 3	36	
3	30	3		$\sim \! 13$	3 3	3.6	
10	100	10		$\sim \!\! 43$	33 4	40	
inx Zynq xc7z100		Xlinx 2	Zynq U	+ ZU3CG	<u>65nm ASIC</u>		
' FF	BRAM	LUT	\mathbf{FF}	BRAM	Logic area	SRAM area	
x 3.9k	$400^{\mathbf{a}}$	24.6k	3.8k	$400^{\mathbf{a}}$	0.022mm ²	$4.3^{\mathrm{b}}\mathrm{mm}^2$	
0.72%	26%	34%	2%	92%	_	-	
	Not re	elevant	40mW ^c				
	Not re	elevant	$4nJ^{d}$				

Comparison with SOA

Hardware denoisers generally seek to minimize memory, which leads to poor discrimination accuracy at high noise rates. The MLPF has by far the best AUC accuracy. Its maximum denoising rate of 25 MHz is suitable for recent event cameras.

Denoiser	hotel-bar AUC ^a	driving AUC ^a	$\mathrm{Mem}(\#)^{\mathrm{b}}$	Max. Ever Rate ^c MHz
MLPF FPGA	0.96	0.87	$W \times H$	23
MLPF ASIC	"	"	$W \times H$	25
BAF [17]	0.89	0.79	$W \times H$	3.6
ONF [16]	0.01^{e}	$0.01^{\rm e}$	$2 \times (W + H)$	3
HashHeat [18]	0.67	0.56^{f}	128	100
IIRs [19]	NA	NA	$W\times H^{\rm g}$	385
LDSI [20]	NA	NA	$W \times H$	$3?^{\mathrm{d}}$

https://github.com/SensorsINI/dnd hls