

IEM

Universität Zürich^{™™}

Yannick Schnider^{1,2}, Stanisław Woźniak¹, Mathias Gehrig³, Jules Lecomte⁴, Axel von Arnim⁴, Luca Benini^{2,5}, Davide Scaramuzza³, Angeliki Pantazi¹ ¹IBM Research – Zurich, ²ETH Zurich, ³University of Zurich, ⁴fortiss GmbH, ⁵Università di Bologna

Neuromorphic Optical Flow based on Event Data

Optical flow provides information on relative motion that is important for many computer vision applications. Neural networks yield **high accuracy** optical flow, yet their complexity is often prohibitive for application at the edge or in robots.

We propose an architecture that can operate both in a spiking and a non-spiking mode. **Model simplification** based on activity and latency analysis is performed to demonstrate high speed optical flow prediction for **real-time** deployments.

Network Architecture

Our network is based on the Timelens network [2] and reformulated as an **SNN** by incorporating spiking spatial convolutions featuring stateful neural cells and layer recurrency. Training is performed **self-supervised** via contrast maximization.

spiking (SNN), **analog-valued spiking** (SNUo), **non-spiking** (sSNU).

Neuromorphic Optical Flow and Real-time Implementation with Event Cameras

		outdoc	or_day1	indoor_	flying1	indoor	_flying2	indoor.	_flying3	OVe	erall
	dt = 1	AEE	% _{Out.}	AEE	% _{Out.}	AEE	% _{Out.}	AEE	% _{Out.}	WAEE	$\overline{\%}_{\text{Out.}}$
non-spiking spiking	LIF-EV-FlowNet [4]	0.53	0.33	0.71	1.41	1.44	12.75	1.16	9.11	0.93	5.90
	XLIF-EV-FlowNet[4]	0.45	0.16	0.73	<u>0.92</u>	1.45	12.18	1.17	8.35	0.90	5.40
	LIF-FireNet [4]	0.57	0.40	0.98	2.48	1.77	16.40	1.50	12.81	1.15	8.02
	PLIF-FireNet[4]	0.56	0.38	0.90	1.93	1.67	14.47	1.41	11.17	1.10	7.00
	our SNN-Timelens	0.44	0.18	<u>0.70</u>	0.79	<u>1.30</u>	<u>9.41</u>	<u>1.05</u>	<u>6.00</u>	<u>0.84</u>	<u>4.10</u>
	our SNUo-Timelens	0.39	<u>0.17</u>	0.64	0.96	1.17	7.71	0.96	4.92	0.76	3.44
	EV-FlowNet[4]	0.47	0.25	0.60	0.51	1.17	8.06	0.93	5.64	<u>0.78</u>	3.61
	RNN-EV-FlowNet[4]	0.56	1.09	0.62	0.97	1.20	8.82	0.93	5.51	0.83	4.10
	our sSNU-Timelens	0.36	0.10	0.58	<u>0.56</u>	<u>1.19</u>	<u>8.78</u>	<u>0.96</u>	6.11	0.73	<u>3.89</u>

Evaluation on the **MVSEC** dataset for comparable models trained on **UZH-FPV Drone Racing** dataset: AEE (the lower, the better), the percentage of outliers per sequence, and the overall weighted AEE (WAAE) as well as the average percentage of outliers. Best scores are in bold, while runner-ups are underlined. Horizontal line delimits **spiking** and **non-spiking** models.

Impact of connectivity

High-quality optical flow

	SNN-T	imelens	sSNU-Ti	sSNU-Timelens			
dt = 1	WAEE	7% Outlier	WAEE	7% Outlier			
R/F	0.84	4.10	<u>0.77</u>	4.23			
F/R	<u>0.85</u>	4.36	1.11	8.44			
R/R	0.89	4.26	0.73	3.89			
F/F	1.12	5.89	1.18	9.26			

Impact of convolutional channels

Qualitative Results

Real-time predictions: aggregated DVS events and optical flow predicted by a **reduced SNN**-Timelens (0.32M) applied for different movements of a hand.

Color encoding used for Optical Flow representation

High-speed optical flow after model reduction

Conclusion and Contributions

References

[1] "Unsupervised event-based learning of optical flow, depth and egomotion", A. Z. Zhu et al., CVPRW, Jun 2019 [2] "Time Lens: Event-based video frame interpolation", S. Tulyakov et al., CVPR, Jun 2021 [3] "Deep learning incorporating biologically inspired neural dynamics and in-memory computing", S. Woźniak et al., Nature Machine Intelligence, Jun 2020 [4] "Self-supervised learning of event-based optical flow with spiking neural networks", J. Hagenaars et al., NeurIPS, 2021

Model reduction results: Our model (blue) compared with prior state-ofthe-art (SOTA) [4] (red) in our CPU setup. **Optical Flow quality** (WAEE) is plotted vs. **frames per second** (fps) while circle size indicates model size.

We design an optical flow architecture, enriched with spiking neurons operating with DVS-based inputs.

We surpass the SOTA [4] for SNNs and ANNs on the MVSEC dataset by 6.1% in spiking, 15.6% in analogvalued spiking, and **5.5%** in non-spiking mode.

We demonstrate **model reduction** from **20.4M to 0.32M** parameters with **0% penalty** in error with regard to the prior art [4], enabling real-time operation.

Demo video

os://youtu.be/jDGDxKabj