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Optical flow provides information on relative motion that is important for many
computer vision applications. Neural networks yield high accuracy optical flow,
yet their complexity is often prohibitive for application at the edge or in robots.
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We propose an architecture that can operate both in a spiking and a non-spiking
mode. Model simplification based on activity and latency analysis is performed
to demonstrate high speed optical flow prediction for real-time deployments.

Network Architecture

Our network is based on the Timelens network [2] and reformulated as an SNN by
Incorporating spiking spatial convolutions featuring stateful neural cells and layer
recurrency. Training is performed self-supervised via contrast maximization.
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High-quality optical flow
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Evaluation on the MVSEC dataset for comparable models trained on UZH-FPV Drone Racing
dataset: AEE (the lower, the better), the percentage of outliers per sequence, and the overall
weighted AEE (WAAE) as well as the average percentage of outliers. Best scores are in bold,
while runner-ups are underlined. Horizontal line delimits spiking and non-spiking models.

Impact of connectivity
SNN-Timelens sSNU-Timelens

dt=1 WAEE %Ouﬂier WAEE %Outlier
R/F 0.84 4.10 0.77 4.23
F/R 0.85 4.36 1.11 8.44
R/R 0.89 4.26 0.73 3.89
F/F 1.12 5.89 1.18 9.26
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The biologically inspired neuronal cells [3] may operate in the following modes:

spiking (SNN), analog-valued spiking (SNUo), non-spiking (sSNU).
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High-speed optical flow after model reduction
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Model reduction results: Our model (blue) compared with prior state-of-
the-art (SOTA) [4] (red) in our CPU setup. Optical Flow quality (WAEE) is
plotted vs. frames per second (fps) while circle size indicates model size.

Qualitative Results Conclusion and Contributions

Demo video
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https://youtu.be/iDGDxKabj0o

 We design an optical flow architecture, enriched with
spiking neurons operating with DVS-based inputs.

We surpass the SOTA [4] for SNNs and ANNs on the
MVSEC dataset by 6.1% in spiking, 15.6% in analog-
valued spiking, and 5.5% in non-spiking mode.

Real-time predictions: aggregated DVS events and
optical flow predicted by a reduced SNN-Timelens
(0.32M) applied for different movements of a hand. o

DVS Events

Optical Flow

 We demonstrate model reduction from 20.4M to
0.32M parameters with 0% penalty in error with
regard to the prior art [4], enabling real-time operation.

Color encoding
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