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Neuromorphic Optical Flow based on Event Data

Optical flow provides information on relative motion that is important for many
computer vision applications. Neural networks yield high accuracy optical flow,
yet their complexity is often prohibitive for application at the edge or in robots.

We propose an architecture that can operate both in a spiking and a non-spiking
mode. Model simplification based on activity and latency analysis is performed
to demonstrate high speed optical flow prediction for real-time deployments.
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High-speed optical flow after model reduction

Model reduction results: Our model (blue) compared with prior state-of-
the-art (SOTA) [4] (red) in our CPU setup. Optical Flow quality (WAEE) is
plotted vs. frames per second (fps) while circle size indicates model size.

Qualitative Results

Real-time predictions: aggregated DVS events and
optical flow predicted by a reduced SNN-Timelens
(0.32M) applied for different movements of a hand.
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Network Architecture
Our network is based on the Timelens network [2] and reformulated as an SNN by
incorporating spiking spatial convolutions featuring stateful neural cells and layer
recurrency. Training is performed self-supervised via contrast maximization.

The biologically inspired neuronal cells [3] may operate in the following modes:
spiking (SNN), analog-valued spiking (SNUo), non-spiking (sSNU).
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Neuromorphic Optical Flow and Real-time Implementation with Event Cameras

High-quality optical flow

Conclusion and Contributions
• We design an optical flow architecture, enriched with 

spiking neurons operating with DVS-based inputs.
• We surpass the SOTA [4] for SNNs and ANNs on the 

MVSEC dataset by 6.1% in spiking, 15.6% in analog-
valued spiking, and 5.5% in non-spiking mode.

• We demonstrate model reduction from 20.4M to 
0.32M parameters with 0% penalty in error with 
regard to the prior art [4], enabling real-time operation.

Evaluation on the MVSEC dataset for comparable models trained on UZH-FPV Drone Racing
dataset: AEE (the lower, the better), the percentage of outliers per sequence, and the overall
weighted AEE (WAAE) as well as the average percentage of outliers. Best scores are in bold,
while runner-ups are underlined. Horizontal line delimits spiking and non-spiking models.
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accumulated per pixel and per polarity for the entire win-
dow width. On the other hand, a voxel-based representation
discretizes the time span of the aggregation window and
uses temporal bi-linear interpolation to populate the bins
with events. Polarity is not treated as a separate channel,
but negative OFF events (-1) and positive ON events (+1)
are summed in a single channel.

For our spiking architectures, we opted for the voxel
grid input coding. The number of discrete time bins is an
additional hyperparameter. Choosing the number of bins
too high yields overly sparse inputs while for a low num-
ber of bins the encoding collapses to a count representation
with a single channel. In the latter case, positive and nega-
tive events can annihilate each other leading to information
loss. For our spiking network, performance peaked at six
time bins (Nin = 6). However, when operating in the non-
spiking mode of sSNU, the count encoding with separate
ON/OFF channels (Nin = 2) performed better, so we use it
for sSNU-based networks. To ensure a fair comparison, the
aggregation window width is fixed and the set of encoded
events is therefore the same for both encoding approaches.

3.4. Training setup

All models are trained in a self-supervised fashion on the
UZH-FPV Drone Racing Dataset [11], using the approach
and configurations from [18]. Specifically, contrast maxi-
mization loss is applied there to compensate the motion and
predict optical flow from the input events. The loss is:

L = Lcontrast(t
fw
ref) + Lcontrast(t

bw
ref ) + �Lsmoothing (7)

where contrast maximization is performed in a forward (tfw
ref)

as well as a backward (tbw
ref ) fashion w.r.t. the current refer-

ence time instance tref. Lsmoothing is a Charbonnier smooth-
ness prior [8] proposed in [32, 34] and � = 0.001 is a bal-
ancing constant. Truncated back-propagation through time
(TBPTT) is performed after every 10 forward passes.

In the original approach [18], the loss included different
spatial resolutions of the optical flow maps. We analogously
extended our architecture with 2D convolutions with tanh

activation to produce optical flow predictions of different
resolutions at each decoding block. These intermediate op-
tical flow maps are then up-sampled to the initial spatial di-
mension using nearest neighbour interpolation for the loss
computation. Simultaneously, they are concatenated to the
input channels of the subsequent decoding blocks.

However, in contrast to the prior work, we also consid-
ered an architecture with the loss applied only to the last
output layer’s prediction. This approach is simpler, faster
and turned out to be beneficial for our architecture.

4. Simulation results

The quantitative performance and generalization abili-
ties of the trained models (self-supervised on the UZH-

FPV Drone Racing Dataset) are evaluated on the MVSEC
dataset [33] following the comparison approach from [18].
The predicted sparse optical flow is compared against the
ground truth optical flow provided by [32]. The ground
truth labels are available at timestamps corresponding with
conventional camera’s frames and quantify the optical flow
over one (dt = 1) or four (dt = 4) frames.

The well-established average end point error (AEE) in
pixels is used to evaluate the four sequences of the dataset:
outdoor day1 (od1), indoor flying1 (if1), indoor flying2
(if2), indoor flying3 (if3). For easier comparability, we in-
troduce a weighted average endpoint error (WAEE) to com-
bine the four metrics into a single scalar value:

WAEE =(
AEEod1

wod1
+

AEEif1

wif1
+

AEEif2

wif2
+

AEEif3

wif3
)/4,

(8)
where the four weights are based on the average AEE of the
best-performing spiking architectures of the prior art [18] –
see Supplementary Note 1 for the values for each dt setting.

Using the WAEE metric, we explored different configu-

SNN-Timelens sSNU-Timelens

dt = 1 WAEE %Outlier WAEE %Outlier

R/F 0.84 4.10 0.77 4.23
F/R 0.85 4.36 1.11 8.44
R/R 0.89 4.26 0.73 3.89

F/F 1.12 5.89 1.18 9.26

dt = 4

R/F 0.84 32.88 0.74 27.20
F/R 0.86 34.23 1.13 44.92
R/R 0.90 35.81 0.71 25.66

F/F 1.15 52.36 1.19 48.34

Table 1. Effects of layer recurrency placement on WAEE (the
lower, the better #) and %Outlier(#) in the encoding blocks. Best
scores are in bold, while runner-ups are underlined.

Recurrency dt = 1 dt = 4

WAEE increase WAEE increase

R/F multi 0.92 9.52 % 0.92 9.52%
F/R multi 0.92 8.24 % 0.92 6.98%
R/R multi 0.94 5.62 % 0.95 5.56%
F/F multi 1.33 18.75 % 1.39 16.0%

Table 2. Effects of multi-layer loss function on intermediate up-
sampled flow predictions for different layer recurrency placement
in the encoder. WAEE(#) and its relative increases with regard to
the last layer loss in Table 1 for SNN-Timelens.
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5.2. Network profiling

In deep CNNs there is no simple linear relationship be-
tween the number of parameters and the inference latency.
Therefore, we profiled the contributions of the components
of the model to assess how the number of stages (encod-
ing/decoding blocks) and the size of convolution impacts
the inference frequency in frames per second (fps). Model
performance is monitored throughout the process to find a
balance between speed and quality of the predicted optical
flow. The fps values are calculated from timings of 100 for-
ward passes on 128⇥128 DVS inputs using Pytorch code
executed on a single core of Intel Core i7 2.6GHz CPU.

Reducing channels. Network profiling has revealed that
the first convolution and the first encoding block are partic-

Figure 5. Impact of convolutional channels count: WAEE, net-
work parameters (in millions [M]), and inference frequency (in
frames per second [fps]) for SNN-Timelens with 5 stages.

# channels 32 28 24 20 16 12

5 stages

WAEE 0.84 0.89 0.89 0.93 0.94 1.02
parameters 25.3 19.4 14.3 9.9 6.3 3.6
frequency 5.9 7.3 9.9 12.8 19.4 26.1

3 stages

WAEE 0.86 0.88 0.90 0.91 0.93 1.00
parameters 1.75 1.34 0.98 0.68 0.44 0.25
frequency 9.8 11.1 14.8 17.2 26.2 32.7

2 stages

WAEE 0.86 0.89 0.90 0.93 0.94 1.10
parameters 0.57 0.44 0.32 0.23 0.15 0.08
frequency 11.4 13.2 18.7 21.4 30.1 36.3

Table 4. Impact of convolutional channels count: WAEE, number
of network parameters (in millions [M]), and inference frequency
(in frames per second [fps]) of our Timelens-based SNNs for 5, 3
and 2 stages (encoding/decoding blocks).

ularly costly in terms of computations. On one hand this is
due to large spatial input dimension, on the other hand it is
influenced by the big convolutional kernels (7⇥7 and 5⇥5).
Nevertheless, decreasing the number of output channels ef-
fectively reduces the computational costs. Fig. 5 illus-
trates a trade-off between the number of channels and per-
formance in terms of WAEE and fps for the SNN-Timelens
model with 5 stages. Note the non-linear relationship be-
tween convolutional channels and network parameters.

Reducing stages. The spiking analysis showed that less
than 5 stages, e.g. 3 stages, are sufficient to obtain reason-
able optical flow predictions. Table 4 extends the analysis,
reporting the WAEE (dt = 1), the number of network pa-
rameters and model inference frequency for different num-
ber of channels and stages. Comparing the WAEE between
5 and 2 stages, we observe minor performance degradation:
0.84 versus 0.86. The 2-stage model comes with 44.4 times
less parameters and increases the evaluation frequency by
93.2%. For further speedup, the number of channels of the
2-stage SNN-Timelens model can be decreased at the cost
of degrading performance in terms of WAEE.

6. Model reduction results

The comparison of our architecture before and after re-
duction is presented for a set of selected configurations in
Fig. 6. While our initial SNN-Timelens featured 5 stages
with 32 channels and used 25.35M parameters, our model
after reduction features only 2 stages with 32 channels and
0.57M parameters, thus reducing the number of trainable
parameters by a factor of 44.4. It involves a trade-off in

Figure 6. Model reduction results: SNN-Timelens compared with
state-of-the-art (SOTA) in our CPU setup. WAEE plotted versus
frames per second (fps); circle size indicates model size. For read-
ability, only selected SNN-Timelens from Table 4 are labeled.
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Optical Flow Prediction

Event Stream 
(ON/OFF) 

Voxel Encoding 
[1]

Spiking Neural
Network

Impact of connectivity

Impact of convolutional channels

outdoor day1 indoor flying1 indoor flying2 indoor flying3 overall

dt = 1 AEE %Out. AEE %Out. AEE %Out. AEE %Out. WAEE %Out.

LIF-EV-FlowNet [18] 0.53 0.33 0.71 1.41 1.44 12.75 1.16 9.11 0.93 5.90
XLIF-EV-FlowNet [18] 0.45 0.16 0.73 0.92 1.45 12.18 1.17 8.35 0.90 5.40
LIF-FireNet [18] 0.57 0.40 0.98 2.48 1.77 16.40 1.50 12.81 1.15 8.02
PLIF-FireNet [18] 0.56 0.38 0.90 1.93 1.67 14.47 1.41 11.17 1.10 7.00
our SNN-Timelens 0.44 0.18 0.70 0.79 1.30 9.41 1.05 6.00 0.84 4.10
our SNUo-Timelens 0.39 0.17 0.64 0.96 1.17 7.71 0.96 4.92 0.76 3.44

EV-FlowNet [18] 0.47 0.25 0.60 0.51 1.17 8.06 0.93 5.64 0.78 3.61

RNN-EV-FlowNet [18] 0.56 1.09 0.62 0.97 1.20 8.82 0.93 5.51 0.83 4.10
our sSNU-Timelens 0.36 0.10 0.58 0.56 1.19 8.78 0.96 6.11 0.73 3.89

dt = 4

LIF-EV-FlowNet [18] 2.02 18.91 2.63 29.55 4.93 51.10 3.88 41.49 0.92 35.26
XLIF-EV-FlowNet [18] 1.67 12.69 2.72 31.69 4.93 51.36 3.91 42.52 0.89 34.57
LIF-FireNet [18] 2.12 21.00 3.72 48.27 6.27 64.16 5.23 58.43 1.17 47.97
PLIF-FireNet [18] 2.11 20.64 3.44 44.02 5.94 64.02 4.98 57.53 1.11 46.55
our SNN-Timelens 1.65 11.03 2.61 29.40 4.50 50.87 3.58 40.22 0.84 32.88
our SNUo-Timelens 1.44 8.98 2.36 24.18 3.98 44.71 3.25 36.01 0.75 28.47

EV-FlowNet [18] 1.69 12.50 2.16 21.51 3.90 40.72 3.00 29.60 0.74 26.08
RNN-EV-FlowNet [18] 1.91 16.39 2.23 22.10 4.01 41.74 3.07 30.87 0.78 27.78
our sSNU-Timelens 1.34 7.99 2.15 20.92 3.97 41.31 3.17 32.44 0.71 25.67

Table 3. Evaluation on the MVSEC dataset for comparable models trained on UZH-FPV Drone Racing Dataset: AEE (the lower, the better
#), the percentage of outliers %Out.(#) per sequence, and the overall WAEE(#) as defined in Eq. 8 as well as the average percentage of
outliers %Out.(#). Best scores are in bold, while runner-ups are underlined. Horizontal lines delimit the spiking and the non-spiking models.

rations of the layer recurrency in the convolutional blocks,
visualized in Fig. 2. As each block comprises two spiking
convolutions, there are four different combinations of recur-
rent (R) and feed-forward (F) convolutions: R/F, F/R, R/R
and F/F. Table 1 reports the results in terms of WAEE and
the average percentage of outliers %Outlier. When operating
in the spiking mode, having one convolution with layer re-
currency per block is favourable. In particular, best perfor-
mance is achieved with recurrent layers in the first convo-
lution (R/F). On the contrary, in the context of non-spiking
mode of sSNU, double layer recurrency (R/R) is beneficial.
We use these best configurations for the final models.

We also evaluated an implementation of multi-resolution
loss, described in the training section. For both settings of
dt = 1 and dt = 4, the reported WAEE values in Table 2
demonstrate that using the simpler setup of the loss applied
only at the last layer is preferred for our architecture. A
possible interpretation of the observed deterioration is that
the multi-layer loss function trains the deeper decoders to
encode down-sampled optical flow rather than to develop
higher-level features. Furthermore, such a formulation is
inconsistent with the ultimate task of the network, which
is predicting high-resolution optical flow at the last layer

rather than outputting the flow predictions at multiple inter-
mediate stages. Imposing a loss only on the last layer, omits
this restriction. We use this approach for all our models.

The resulting AEEs, WAEEs and outlier percentages
(AEE > 3 pixels) for our Timelens-based architecture with
spiking (SNN), analog-valued spiking (SNUo) and non-
spiking (sSNU) units are reported in Table 3. Our model is
compared with the state-of-the-art spiking and non-spiking
architectures trained in the identical self-supervised setting
[18]. For an extended comparison with EV-FlowNet [32,34]
and Hybrid-EV-FlowNet [20] that use different training
datasets and setups, see Supplementary Note 2.

For spiking neural networks, our SNN-Timelens sur-
passes the performance of the LIF- and XLIF-EV-FlowNet
by 9.7%, 6.7% with regard to WAEE and lowers the per-
centage of outliers %Outlier by 30.5%, 24.1% for dt = 1, re-
spectively. As the improvement over the XLIF-EV-FlowNet
is 5.6% for dt = 4, the average prediction error is reduced
by 6.1%. Table 3 shows that our SNNs are not only better
on average, but outperform the comparable state-of-the-art
on each MVSEC sequence for dt = 1 and dt = 4.

Operating with analog-valued spikes, SNUo-Timelens
achieves a further substantial reduction in WAEE: 18.3%
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DVS Events Optical Flow

https://youtu.be/jDGDxKabj0o
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