
How small can event data be, while preserving 
sufficient information for the task at hand?

 
In this first human perception study with event data, we show:

→ the unequal data quality between event downscaling methods. 
→ the existence of a size threshold under which 

human performance falls below the chance level. 
→ some unexpected discrepancies in a comparison 

between human and machine performance.

What does the picture display? 
 

                         ☐ A
                         ☐ B
                         ☐ C
                         ☐ D
                         ☐ I don't know

Frugal event data: how small is too small?
A human performance assessment with shrinking data
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Spatial downscaling methods 
[Gruel, 2022; Gruel 2023]:

Temporal downscaling methods: 
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Top. Human accuracy and rate of 'unknown" answers to event data downscaled spatially (left) and temporally (right)
Bottom. Ratio of the human accuracy to the PLIF classifier accuracy [Fang, 2021]

Choice between four gestures, displayed during 10s
and selected in DVS 128 Gesture dataset [Amir, 2017]

Global comparison between methods according to human and machine performance, number of events and runtime


