
Introduction
Ø Flow cytometry identifies & analyzes different types of cells

Ø Uses physical and chemical properties like shape or fluorescence
Ø Label-free = not using biomarkers -> more robust and versatile

Ø Goals: high accuracy and low latency
Ø Rationale: event-based camera replaces high-speed camera ($$)

Ø Less data (sparse, only differences), lower latency
Ø Neuromorphic hardware (Loihi 2) for SNN classification model

Free-space optical setup 
Ø Coherent laser: leverage light-matter interactions as nonlinear high-

dimensional feature map. Allows simpler classification model.

Data
Ø 2 classes of spherical microparticles (diameter 16µm and 20µm)
Ø 10x data compression compared to frame-based camera

Data processing
Ø Time binning (T!"" = 1𝑚𝑠), remove bins with low activity (<1k events)
Ø 20x downsampling, yielding 32x24 resolution with 2 channels
Ø Preprocess using LIF neuron with 𝑇#$%#&'()#* = 2 and 𝑣#$+( = 0:

𝑣,*- 𝑡 = 𝜎𝑣 𝑡 − 1 + 𝑤𝑛,*-./ 𝑡
𝑠,*- 𝑡 = 𝑣,*- 𝑡 > 𝑣(0#

with 𝑛,*-./ 𝑡 being number of input spikes at pixel 𝑥𝑦𝑝 at time 𝑡 (in µs).

Training setup
Ø Training: three trials, testing: one trial (validation: last 12s of training trials)

Ø Trained on GPU with Torch, then transferred to Loihi 2 for inference.

Spiking neural network
Ø Spiking MLP, using CUBA LIF neurons compatible with Loihi 2:

Ø Using SLAYER [1] for training, using rate coding for the output neurons 
with 𝑟(#1$ = 0.3 and 𝑟%&2+$ = 0.02

Experiments
Ø Linear classifier on frames (accumulated over 𝑇&'' = 1𝑚𝑠)
Ø Neural networks on frames: MLP (512 or 512-512) and CNN 

Ø MLP: 512 or 512-512
Ø CNN: 32 filters, 64 filters (3x3 kernel, 2x2 pool size), then 512 neuron MLP

Ø Spiking MLP on event data: with/without trainable delays, 512 or 512-
512, different sampling times (1µs, 10µs, 100µs)
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Results
Ø Event-based setup outperforms frame-based setup

Ø Verified results on Loihi 2

Summary/Conclusion
Ø Sampling time of 100µs too long, 10µs still okay
Ø Delay improves classification accuracy
Ø For real-time classification at 1000 samples/second, need neuromorphic 

hardware with input-to-SNN-output latency of <= 10µs.
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Spiking MLP: one hidden layer of 512 neurons, 1µs sampling time

Event-based data

Model 1 µs 10 µs 100 µs

Linear
98.11% ± 0.30%

96.81% ± 0.96%

97.72% ± 0.21%

95.53% ± 2.13%

86.73% ± 0.67%

83.08% ± 2.12%

1
la
y
er No delay

99.46% ± 0.10%

98.26% ± 0.42%

99.35% ± 0.07%

98.09% ± 0.47%

87.47% ± 0.61%

84.20% ± 4.42%

Trained delay
99.43% ± 0.11%

98.45% ± 0.34%

99.37% ± 0.11%

98.13% ± 0.29%

91.51% ± 0.76%

88.99% ± 1.56%

2
la
y
er
s No delay

99.60% ± 0.17%

98.12% ± 0.38%

99.18% ± 0.12%

97.25% ± 0.67%

51.97% ± 3.42%

50.72% ± 15.29%

Trained delay
99.74% ± 0.12%

98.29% ± 0.41%

99.47% ± 0.03%

97.44% ± 0.58%

68.00% ± 11.34%

68.98% ± 2.43%

Frame-based data

Linear
98.86% ± 0.21%
96.05% ± 0.80%

1 layer
99.46% ± 0.20%
97.32% ± 0.55%

2 layers
99.52% ± 0.23%
97.51% ± 0.35%

CNN
99.67% ± 0.05%
97.09% ± 0.70%

633nm He-Ne laser 
focused on 
polymethyl 
methacrylate 
microfluidic channel 
of width 200µm.

Automated pump gives 
more constant flow rate:

4 experiment trials à 𝑇!"# = 60𝑠, accumulation time for particle 𝑇$%% = 1𝑚𝑠,
event-camera sensor of size 640x480

𝜎 = 0.9
𝑤 = 1.0
𝑣!"# = 3.0

𝑢/ = 1 − 𝜏1 𝑢/<= + 𝑎./)
𝑣/∗ = 1 − 𝜏? 𝑣/<= + 𝑢/ + 𝑏

𝑠/)1( = 𝑣/∗ > 𝑣(0#
𝑣/ = 𝑣/∗(1 − 𝑠/)1()
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