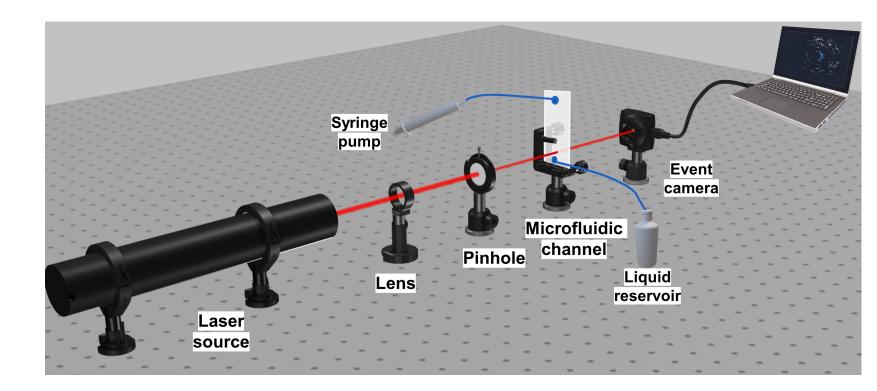
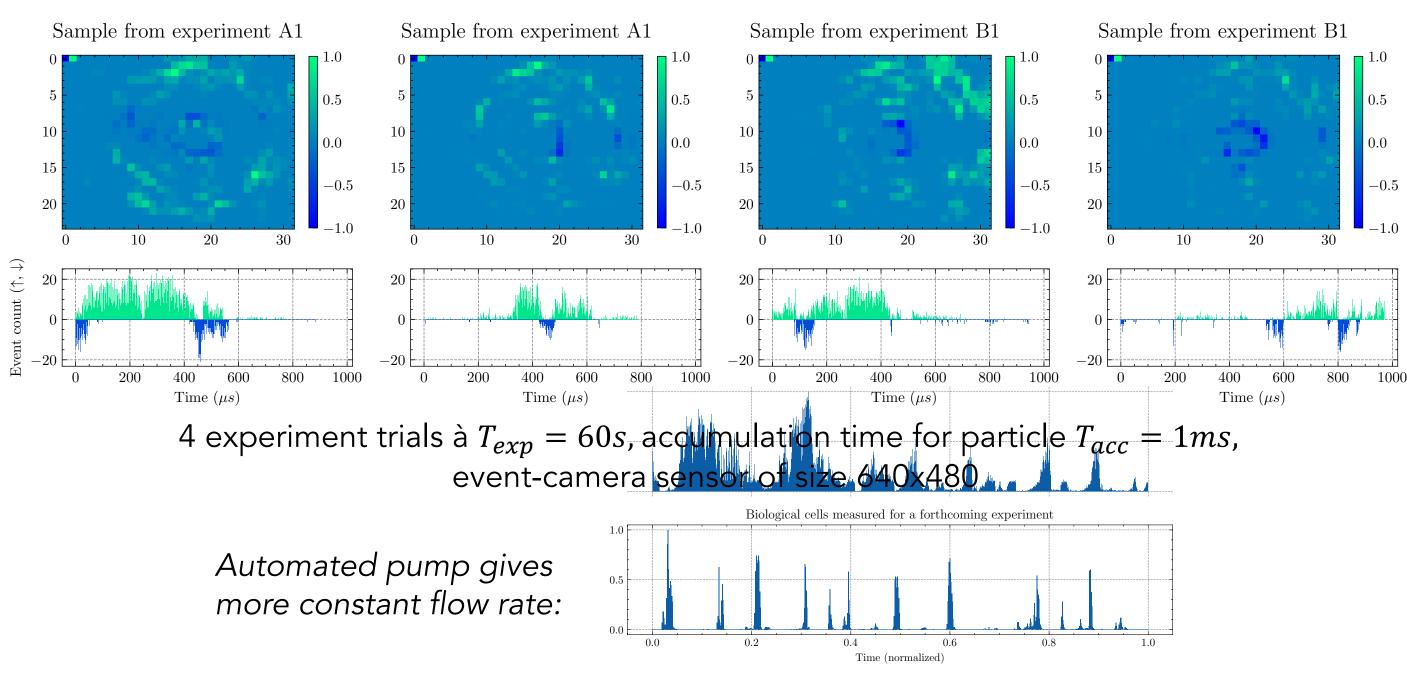


GHENT UNIVERSITY


Flow cytometry with event-based vision and spiking neuromorphic hardware <u>Steven Abreu¹, Muhammed Gouda², Alessio Lugnan², Peter Bienstman²</u> ¹ University of Groningen, ² Ghent University

Introduction

- Flow cytometry identifies & analyzes different types of cells
- Uses physical and chemical properties like shape or fluorescence
- \blacktriangleright Label-free = not using biomarkers -> more robust and versatile
- ➢ Goals: high accuracy and low latency
- Rationale: event-based camera replaces high-speed camera (\$\$)
- Less data (sparse, only differences), lower latency
- Neuromorphic hardware (Loihi 2) for SNN classification model


Free-space optical setup

> Coherent laser: leverage light-matter interactions as nonlinear highdimensional feature map. Allows simpler classification model.

Data

 \geq 2 classes of spherical microparticles (diameter 16µm and 20µm) > 10x data compression compared to frame-based camera

Data processing

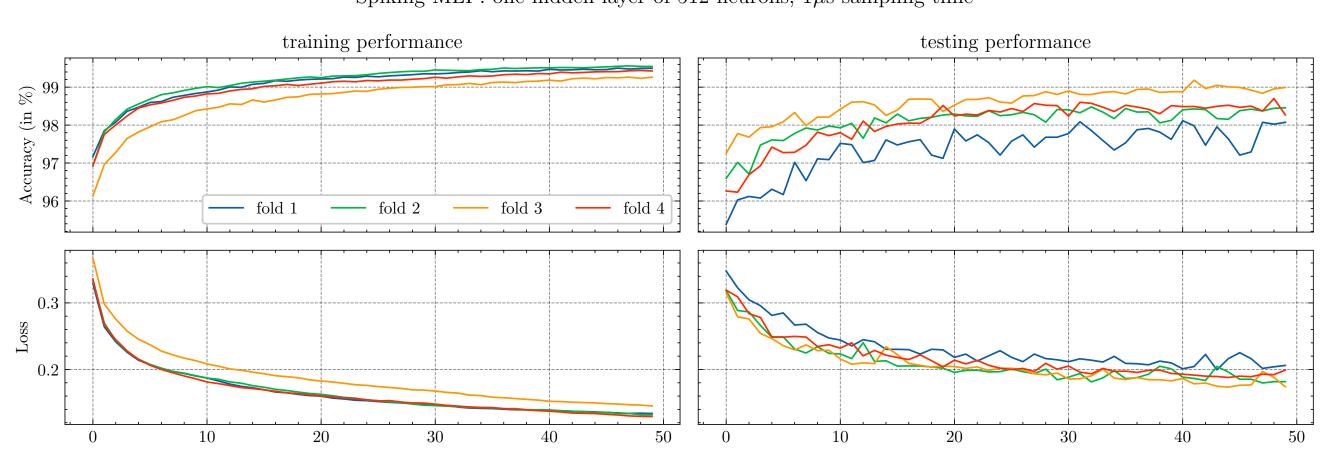
- \succ 20x downsampling, yielding 32x24 resolution with 2 channels

> Time binning ($T_{acc} = 1ms$), remove bins with low activity (<1k events) > Preprocess using LIF neuron with $T_{refractory} = 2$ and $v_{rest} = 0$: $\sigma = 0.9$ $v_{xyp}(t) = \sigma v(t-1) + w n_{xyp}^{in}(t)$ w = 1.0 $s_{xyp}(t) = v_{xyp}(t) > v_{thr}$ $v_{thr} = 3.0$ with $n_{xyp}^{in}(t)$ being number of input spikes at pixel xyp at time t (in µs).

Training setup

- > Training: three trials, testing: one trial (validation: last 12s of training trials)
- \succ Trained on GPU with Torch, then transferred to Loihi 2 for inference.

Spiking neural network

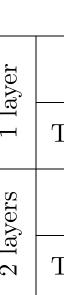

Spiking MLP, using CUBA LIF neurons compatible with Loihi 2:

$$u_n = (1 - \tau_u)u_{n-1} + a_{in}$$
 s_n^0

$$v_n^* = (1 - \tau_v)v_{n-1} + u_n + b \qquad v_n$$

Using SLAYER [1] for training, using rate coding for the output neurons with $r_{true} = 0.3$ and $r_{false} = 0.02$

Spiking MLP: one hidden layer of 512 neurons, 1μ s sampling time


Experiments

- > Linear classifier on frames (accumulated over $T_{acc} = 1ms$)
- Neural networks on frames: MLP (512 or 512-512) and CNN
 - ➢ MLP: 512 or 512-512
- > CNN: 32 filters, 64 filters (3x3 kernel, 2x2 pool size), then 512 neuron MLP \succ Spiking MLP on event data: with/without trainable delays, 512 or 512-512, different sampling times (1µs, 10µs, 100µs)

633nm He-Ne laser tocused on polymethyl methacrylate microfluidic channel of width 200µm.

Results

Frame-based data				
Linear	$98.86\% \pm 0.21\%$			
	$96.05\%\pm 0.80\%$			
1 layer	$99.46\%\pm 0.20\%$			
	$97.32\%\pm0.55\%$			
2 layers	$99.52\% \pm 0.23\%$			
	${\bf 97.51\%\pm0.35\%}$			
CNN	$99.67\% \pm 0.05\%$			
	$97.09\%\pm0.70\%$			

Verified results on Loihi 2

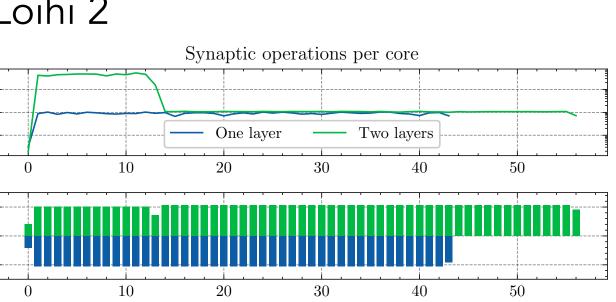
$$ut = v_n^* > v_{thr}$$
$$= v_n^* (1 - s_n^{out})$$

Summary/Conclusion

- \succ Sampling time of 100µs too long, 10µs still okay
- > Delay improves classification accuracy

References

- 31, 2018.


Acknowledgements

This work was performed in the context of the European projects Neoteric (grant no. 871330), Prometheus (grant no. 101070195) and Post-Digital (grant no. 860360).

Event-based setup outperforms frame-based setup

Event-based data				
Model	$1 \ \mu s$	$10 \ \mu s$	$100 \ \mu s$	
Linear	$98.11\% \pm 0.30\%$	$97.72\% \pm 0.21\%$	$86.73\%\pm 0.67\%$	
	$96.81\%\pm 0.96\%$	$95.53\% \pm 2.13\%$	$83.08\%\pm2.12\%$	
No delay	$99.46\% \pm 0.10\%$	$99.35\%\pm 0.07\%$	$87.47\% \pm 0.61\%$	
	$98.26\%\pm 0.42\%$	$98.09\% \pm 0.47\%$	$84.20\% \pm 4.42\%$	
Trained delay	$99.43\% \pm 0.11\%$	$99.37\% \pm 0.11\%$	$91.51\%\pm 0.76\%$	
	$\textbf{98.45\%}\pm\textbf{0.34\%}$	${\bf 98.13\%\pm0.29\%}$	${\bf 88.99\% \pm 1.56\%}$	
No delay	$99.60\% \pm 0.17\%$	$99.18\% \pm 0.12\%$	$51.97\% \pm 3.42\%$	
	$98.12\% \pm 0.38\%$	$97.25\%\pm0.67\%$	$50.72\%\pm15.29\%$	
Trained delay	$99.74\% \pm 0.12\%$	$99.47\% \pm 0.03\%$	$68.00\% \pm 11.34\%$	
	$98.29\%\pm0.41\%$	$97.44\%\pm0.58\%$	$68.98\%\pm2.43\%$	

For real-time classification at 1000 samples/second, need neuromorphic hardware with input-to-SNN-output latency of $\leq 10 \mu s$.

1) S. Shrestha & G. Orchard. SLAYER: Spike Layer Error Reassignment in *Time*. In: Advances in Neural Information Processing Systems, Volume

2) Howard M. Shapiro. *Practical Flow Cytometry, 4th edition*. Wiley, 2003.

