

Introduction

Many event-based datasets have a limited number of labeled samples

It presents challenges for the development of event vision algorithms

Self-Supervised Representation Learning (SSRL) is a good solution for reducing the reliance on labeled data

Event-based SSRL framework

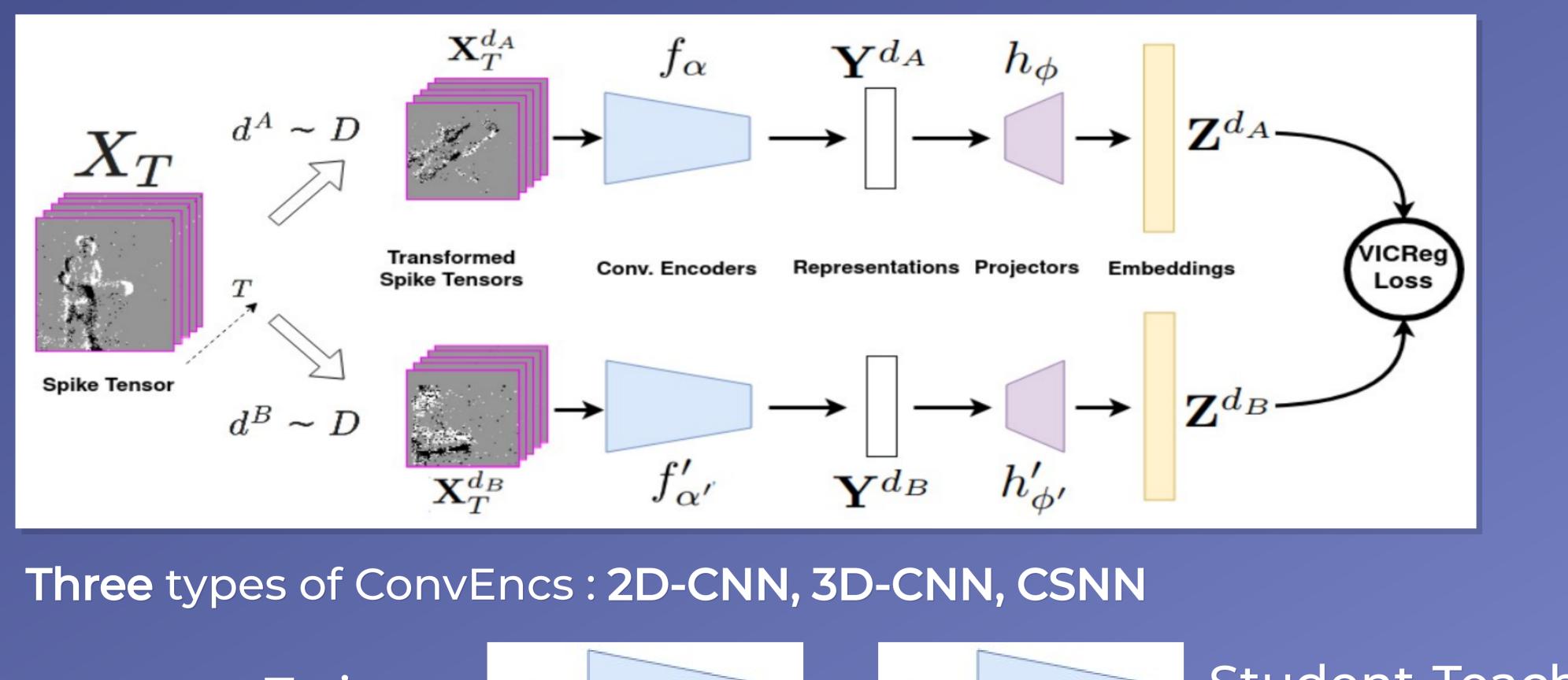
Evaluation protocols

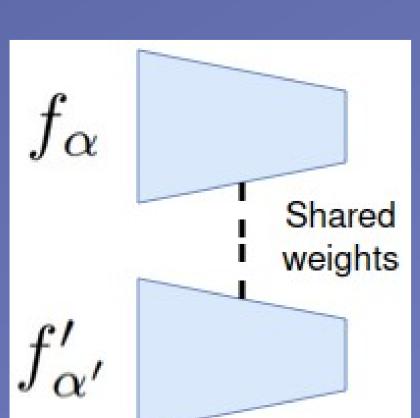
Contributions

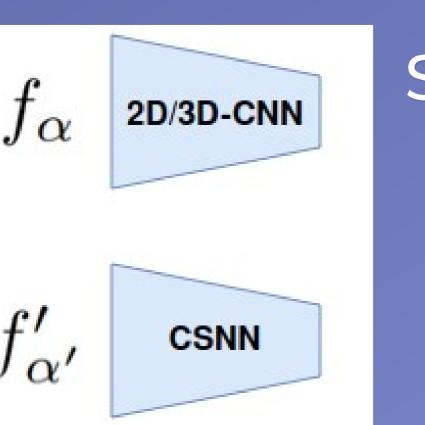
Study on EDAs (Event Data Augmentation)

Event-Based SSRL Framework

Joint embedding architecture



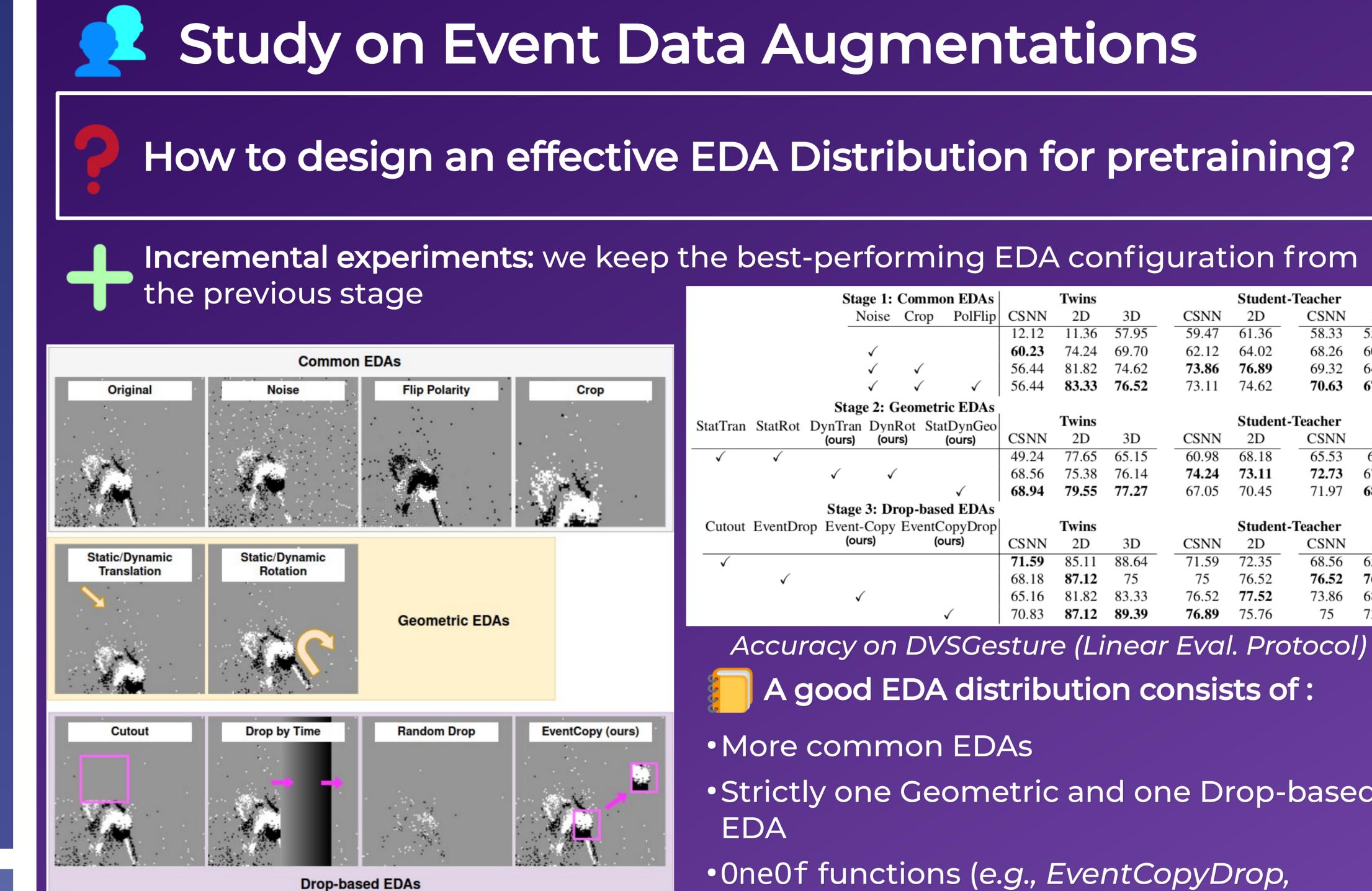




Exploring Joint Embedding Architectures and Data Augmentations for Self-Supervised Representation Learning

Chaabane Djéraba¹ Sami Barchid¹ José Mennesson¹² ¹ Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL ² IMT Nord Europe, Institut Mines-T elecom, Centre for Digital Systems ¹² F-59000 Lille, France

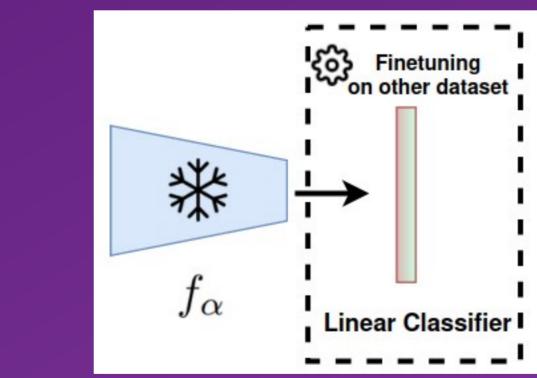
Analysis of learned features



Student-Teacher

Evaluation Protocols Linear Evaluation

	€F	inetuning	
**			
f_{lpha}	Linear	Classifier	



Dataset	Protocol	CSNN	2D	3D	CSNN_{2D}	CSNN _{3D}					
	Linear	70.83	87.12	89.39	76.89	76.52	Metric	: classif	ication	accura	cy (%)
DVSGesture	SemiSup-10%	60.98	75.52	81.44	66.67	69.31					
2.00000000	SemiSup-25%	75.00	87.12	90.15	76.14	80.30					
	Linear	64.29	64.39	69.46	62.34	65.67					
N-Caltech101	SemiSup-10%	56.72	64.64	62.80	53.96	53.50					
	SemiSup-25%	66.02	72.79	71.64	62.22	59.93					
	Linear	95.32	99.38	98.68	97.87	97.30					
ASL-DVS	SemiSup-05%	95.66	97.06	96.62	93.54	95.66					
	SemiSup-10%	99.51	99.64	99.70	99.48	99.48		Transfe	er learr	ning pro	tocol
						D	atasets				
						Pretrain	Linear	CSNN	2D 3D	CSNN _{2D}	CSNN _{3D}

	Stage	1: Con	nmon EDAs		Twins			Studen	t-Teacher	
	Noi	se Cro	op PolFlip	CSNN	2D	3D	CSNN	2D	CSNN	3D
				12.12	11.36	57.95	 59.47	61.36	58.33	55.68
	\checkmark			60.23	74.24	69.70	62.12	64.02	68.26	60.23
	\checkmark	\checkmark	r	56.44	81.82	74.62	73.86	76.89	69.32	64.02
	\checkmark	\checkmark	\lambda \lambda	56.44	83.33	76.52	73.11	74.62	70.63	67.80
	Stage 2	: Geon	netric EDAs							
StatRot D	U		StatDynGeo		Twins			Studen	t-Teacher	
Station D	~	(ours)	(ours)	CSNN	2D	3D	CSNN	2D	CSNN	3D
\checkmark				49.24	77.65	65.15	 60.98	68.18	65.53	62.5
	\checkmark	\checkmark		68.56	75.38	76.14	74.24	73.11	72.73	67.05
			\checkmark	68.94	79.55	77.27	67.05	70.45	71.97	68.18
	Stage 3:	Drop-	based EDAs							
EventDrop	Event-Co	py Eve	entCopyDrop		Twins			Studen	t-Teacher	
_	(ours)	_	(ours)	CSNN	2D	3D	CSNN	2D	CSNN	3D
				71.59	85.11	88.64	 71.59	72.35	68.56	65.91
\checkmark				68.18	87.12	75	75	76.52	76.52	76.14
	\checkmark			65.16	81.82	83.33	76.52	77.52	73.86	68.94
			\checkmark	70.83	87.12	89.39	76.89	75.76	75	73.48

Accuracy on DVSGesture (Linear Eval. Protocol)

A good EDA distribution consists of :

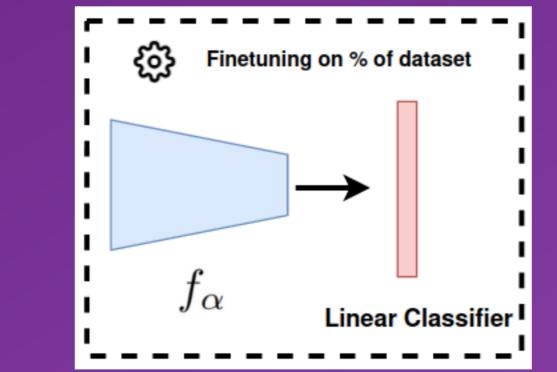
• More common EDAs

Strictly one Geometric and one Drop-based

•OneOf functions (e.g., EventCopyDrop, StatDynGeo,...)

Transfer Learning

Semi-Supervised



91.03

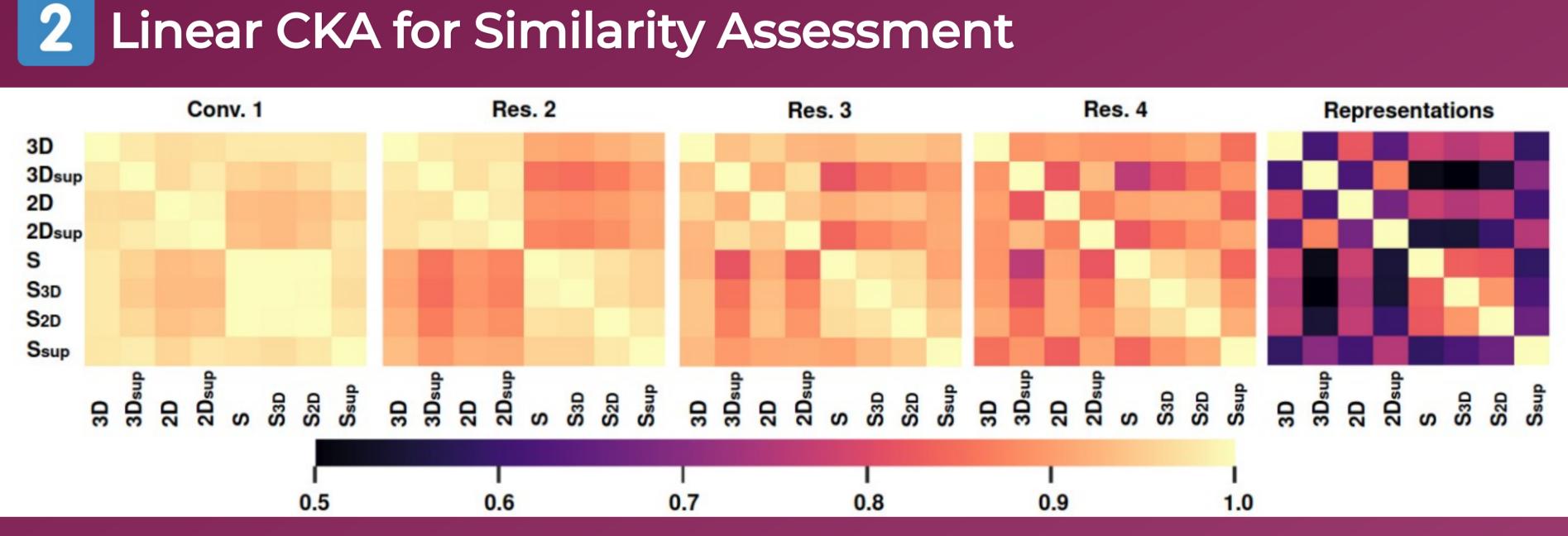
Analysis of Learned Features

1 Uniformity - Tolerance Trade-Off

result in optimal representation quality

	DVSG	esture		ASL-	DVS	
CSNN	0.83	0.75	0.84	0.56		
2D	0.73	1.37	-0.18			3.60
3D	0.86	0.6	0.22			3.46
SNN _{2D}	0.91	0.92	0.77	0.92		
SNN _{3D}	0.81	0.90	0.73	1.11		
1.5	1 0.5	0 0.5 1 1.5	1 (0 1	2	3

 The original assumption does not prevail •Student-Teacher variant increases the tolerance of the CSNNs



Conclusion

Assumption from frame-based vision: balanced values of Uniformity and Tolerance

•The divergence increases with deeper layers •The impact of Student-Teacher variants on the learned features of CSNNs

We propose a method for event-based SSRL that utilizes a joint embedding architecture and event data augmentations

The evaluation protocols established in this study emphasize the efficiency and transferability of the learned features, as well as the reduced dependence on labeled data facilitated by our framework

We thoroughly **investigate the impacts of popular EDAs** and introduce additional methods to achieve an optimal distribution for event-based SSRL

Our method creates exciting possibilities for designing future event-based vision applications that do not require large-scale training sets