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Abstract

Motion blur can significantly reduce the quality of im-
ages, and researchers have developed various algorithms
to address this issue. One common approach to deblur-
ring is to use deconvolution to cancel out the blur effect,
but this method is limited by the difficulty of accurately
estimating blur kernels from blurred images. This is be-
cause the motion causing the blur is often complex and non-
linear. In this paper, a new method for estimating blur ker-
nels is proposed. This method uses an event camera, which
captures high-temporal-resolution data on pixel luminance
changes, along with a conventional camera to capture the
input blurred image. By analyzing the event data stream,
the proposed method estimates the 2D motion of the blurred
image at short intervals during the exposure time, and inte-
grates this information to estimate a variety of complex blur
motions. With the estimated blur kernel, the input blurred
image can be deblurred using deconvolution. The proposed
method does not rely on machine learning and therefore
can restore blurry images without depending on the qual-
ity and quantity of training data. Experimental results show
that the proposed method can estimate blur kernels even for
images blurred by complex camera motions, outperform-
ing conventional methods. Overall, this paper presents a
promising approach to motion deblurring that could have
practical applications in a range of fields.

1. Introduction
Motion blur is caused by the camera or the subject mov-

ing during the exposure time, and it can degrade image qual-
ity. Deblurring, the process of removing blur from images,
is a major topic in the field of computer vision, and many
algorithms for deblurring have been proposed.

Traditionally, deblurring has been tackled by the opti-
mization problem with constraints given by priors of the
blurred images, as deblurring is an ill-posed problem that
cannot be solved directly. Previous work has dealt with the
problem by getting the priors on camera motion or the prop-
erty of the target images. Although these methods work
well only when such constraints fit to the target blurred im-
ages, they do not always go well for every blurred image in
the real world.

In recent years, many deblurring methods using deep
learning have been proposed. These methods learn the rela-
tionship between a blurry frame and a blur kernel (or sharp
frame) from training data. Although they perform remark-
ably well in benchmarking, their performance is often de-
graded by domain differences between the target blurred
images and the images used for training, which depends on
the quantity and quality of training data.

To solve these problems, we propose a non-learning-
based method for motion deblurring, which works by es-
timating a blur kernel from the events captured by an addi-
tional event camera. Event cameras are bio-inspired cam-
eras that output the change of pixel luminance as events.
Since these processes are asynchronously at each pixel po-
sition, the temporal resolution of event cameras is much
higher than that of conventional frame cameras. Therefore,
event cameras can capture events without suffering from
motion blur.

Using additional sensors such as event cameras is a stan-
dard approach for deblurring. Deblurring images is a chal-
lenge because, as a consequence of pixel values being aver-
aged, there is a loss of information when images get blurred.
It is important to complement this information loss. Na-
yar and Ben-Ezra proposed a method of using an additional
camera with a higher frame rate (but a lower resolution) to
measure its motion during the exposure time of the target



camera [11] so that the motion blur kernel can accurately be
estimated even for complex camera motion. This suggests
that additional information with a high temporal resolution
is effective for deblurring. The use of events as additional
information is expected to be an effective approach because
events provide the information with high temporal resolu-
tion as mentioned above.

In this paper, we propose a method for estimating a blur
kernel using motions estimated from events. Some previous
works [6, 7, 12] have been able to estimate rapid motions
of cameras and objects accurately using events. We use
Contrast Maximization [6] to estimate translation speeds at
short intervals during the exposure time, and then we re-
construct a blur kernel. Using event data for blur kernel
estimation enables us to accurately estimate complex blur
kernels in the real world.

To demonstrate the effectiveness of the proposed
method, experiments with synthetic and real data were con-
ducted to confirm the effectiveness of the proposed method
for deblurring. Experimental results quantitatively and
qualitatively show that the proposed method can restore im-
ages more accurately than other methods.

In summary, the contributions of this paper are as fol-
lows.

• We propose a method for image deblurring by estimat-
ing a blur kernel from event data that is simultaneously
captured with the image.

• We experimentally demonstrate that using the event
camera with the conventional camera is effective to es-
timate the blur kernel for motion deblurring.

• We compare the performance of the deblurring algo-
rithm based on the estimated blur kernel by the pro-
posed method with related deblurring algorithms. The
results prove that the proposed deblurring approach
outperforms the other methods.

2. Related Work

2.1. Image Deblurring

Deblurring is one of the main topics in the field of com-
puter vision. Blurred images are generated by averaging
pixel values along the motion of the subject or camera dur-
ing the exposure time. Blurred images lose some infor-
mation about the latent sharp image due to this averaging.
Therefore, the deblurring process is an ill-posed problem,
and it is generally impossible to determine a single solu-
tion. There are two major ways to avoid this problem; one
is to determine a single solution by adding constraints or
prior information to the given information, and the other is
to find a solution using deep learning.

The former determines a plausible solution from among
countless possible solutions by adding priors to the pro-
vided image information. Priors include, for example, edge
sharpness [9] and dark channel [14]. However, the problem
is that these priors are not always valid in the real world,
thus limiting their applicability.

With the development of deep learning, a number of the
latter methods have been proposed. Chakrabarti proposed a
network to predict the Fourier coefficients of blur kernels in
the deblurring process [1]. Kaufman and Fattal proposed a
pipeline for deblurring using an Analysis network for esti-
mating blur kernels and a Synthesis network for non-blind
deblurring [10]. More recently, an end-to-end network for
deblurring has also been proposed. Cho et al. proposed a U-
Net type network based on the concept of coarse-to-fine [3].
These methods, however, have the limitation that the recov-
ery accuracy depends on the quantity and quality of training
data.

2.2. Event-based Image Deblurring

Deblurring is one of the main applications of event cam-
eras. Since event cameras have high temporal resolution
and are capable of getting data without any blur, the use of
event cameras for deblurring should be effective. L. Zhang
et al. [20] proposed Hybrid Deblur Net that generates a
dense representation from sparse events using an Encoder-
Decoder network and performs deblurring using it. C. Zhou
et al. [22] proposed DeLiEve-Net, which performs deblur-
ring by focusing on the association between light streaks in
motion blurred images and blur kernels. Also, several meth-
ods have been proposed to simultaneously perform deblur-
ring and frame interpolation. L. Pan et al. [15,16] proposed
an EDI model to estimate the amount of luminance change
between frames from events and a mEDI model, which is an
extension of the EDI model. X. Zhang et al. [21] proposed
a method to perform a series of processes using deep learn-
ing concerning the EDI model. Z. Jiang et al. [8] proposed
a convolutional recurrent neural network that incorporates a
directional event filtering module to extract boundary prior
from events. X. Fu et al. [19] proposed a model for motion
deblurring using real events. B. Wang et al. [18] proposed
eSL-Net using sparse learning framework.

3. Method
Figure 1 shows an overview of the proposed method.

This method takes blurred RGB frame from a RGB cam-
era and events from an event camera attached with the RGB
camera. The blur kernel is estimated from events recorded
during the frame exposure. Then the RGB frame is de-
blurred by deconvolution with the estimated blur kernel. As
described above, this method consists of two phases: es-
timation of blur kernels from event data and deblurring of
input RGB frame. Each phase is described in detail below.



Figure 1. Overview of the proposed method.

3.1. Blur Kernel Estimation

Estimating a blur kernel accurately is crucial for deblur-
ring. Theoretically, it is possible to remove a blur by de-
convolution of a blurry image with a blur kernel. However,
when there is an estimation error in the blur kernel, the blur
remains or artifacts like ringing appear in the recovered im-
age. Therefore, it can be said that the quality of deblurring
depends on the accuracy of blur kernel estimation.

Since events are generated in response to changes in lu-
minance in an image, they follow edges, which change lu-
minance spatially. Therefore, it can be said that the events
encode the motion of the camera and the subject. Since a
blur kernel corresponds to the motion trajectory of them, the
blur kernel can be recovered by estimating motion from the
events. Since the events have detailed temporal informa-
tion, blur kernels caused by severe camera motion, which
are difficult to be recovered by conventional image-based
methods, can be estimated by using the events.

The proposed method assumes that there is no local mo-
tion in the image, and reconstructs the blur kernel by esti-
mating the motion trajectory of the entire image from the
events. The process of blur kernel estimation is comprised
of two parts: velocity estimation and blur kernel construc-
tion.

3.1.1 Contrast Maximization

The proposed method uses Contrast Maximization [6] to es-
timate the speed of constant velocity linear motion of an
image from events. Contrast Maximization is a method to
estimate parameters related to the motion of an image from
events.

We explain how to estimate the velocity of a constant ve-
locity linear motion of an image using Contrast Maximiza-
tion. Consider warping all events to the reference time tref
according to the velocity v. Event ek is warped according
to

x′
k = xk + (tref − tk)v (1)

where xk, tk are the position and the timestamp of ek, and
x′
k is warped position. We add the polarity bk = +1,−1 of

ek to the coordinate x′
k after warp, summed value H(x;v)

at the position x is calculated as

H(x;v) = ΣNe

k=1bkδ(x− x′
k) (2)

where δ(·) denotes the Dirac delta function and Ne is the
number of all events. If the whole image is in translational
motion with velocity vGT , all points in the image move on
a straight line with gradient vGT in xyt space. Since the
events follow the edges in the image, the events are also
aligned on the straight line of gradient vGT in the xyt-space
as shown in Figure 2. Therefore, when v = vGT , since
events generated from the same point are warped to the
same coordinates, the value of H(x;v) should be highly
biased at each coordinate, i.e., the variance should be large.
In this method, the velocity is estimated by finding the value
of H(x;v) that maximizes the variance of H(x;v) through
optimization.

Contrast Maximization can also be used to estimate pa-
rameters of more general motions such as homography.
However, as the number of parameters increases for more
general motions, and dimensionality of the search space in-
creases, optimization becomes more difficult. In the present
method, the optimization is more easily completed by re-
stricting the estimation to translational velocity.

In addition, Contrast Maximization is insensitive to noise
in the events because it estimates parameters in a major-
ity voting manner using all events. Therefore, proposed
method is robust against noise in the events.

3.1.2 Velocity Estimation

Since the general motion of an image is curved and variable
in speed, it is not possible to directly estimate the motion of
an image by simply applying Contrast Maximization. How-
ever, the general motion can be approximated as a sequence
of constant velocity linear motions within a very short pe-
riod. For this purpose, we first estimate the speed of the im-



Figure 2. Event alignment. This figure visualizes events occurring
when a black square moves with constant velocity in a diagonal
direction. The red and blue dots correspond to the respective po-
larities. It can be seen that the events are aligned in xyt-space.

Figure 3. Velocity estimation.

age’s motion at some timestamps during the exposure time
using Contrast Maximization.

Figure 3 shows an overview of velocity estimation. In
this part, we use Contrast Maximization to estimate the ve-
locities of the motion during the exposure time.

First, we set N timestamps to estimate a velocity during
the exposure time. The time interval D between adjacent
timestamps is represented as

D =
tend − tbegin

N
(3)

where tbegin and tend are the timestamp when the exposure
time begins and ends, respectively. Also, i-th timestamp ti
(0 ≤ i < N ) is represented as follows.

ti = tbegin + (i+
1

2
)D (4)

Next, we estimate the velocity of an image at timestamp
ti. Using Contrast Maximization, the velocity vi at times-
tamp ti is estimated from events in the neighboring period
[ti − T

2 , ti +
T
2 ] where T is the length of the interval. If T

is short enough, the motion of the image in the time interval
can be regarded as a constant velocity linear motion.

Figure 4. Blur kernel construction.

3.1.3 Blur Kernel Construction

Figure 4 shows an overview of blur kernel construction. In
this part, we estimate the blur kernel corresponding to a
blurry frame using the velocity estimated in Section 3.1.2.

First, we fit the velocity in the time interval around times-
tamp ti as a quadratic function with respect to time t. As
the velocity vi estimated in Section 3.1.2 is a sampled value
at timestamp ti, we cannot integrate the velocity with re-
spect to time and cannot compute the displacement. Fitting
is performed in the x and y directions respectively, using
three velocities vi−1, vi, and vi+1. The displacement di in
the time interval [tbegin + iD, tbegin + (i + 1)D] around
time ti is represented as

di =

∫ tbegin+(i+1)D

tbegin+iD

vi(t)dt (5)

where vi(t) is the fitting result.
Next, we construct a blur kernel by joining the estimated

displacements. In this paper, since a 2D uniform blur is
assumed, the motion of the entire image corresponds to the
blur kernel.

3.2. Deblurring of Each Frame

After estimating blur kernels, we perform deblurring of
each blurry frame input. The proposed method uses the
non-blind deblurring method proposed by Cho et al. [2].
In the method, deblurring is performed considering the fact
that there are inlier and outlier pixels in a blurred image.
Inlier pixels follow the general blurred image generation
process, while outliers do not follow the general genera-
tion process due to saturation. Uniform deblurring of inlier
and outlier pixels may cause ringing. The method applies
EM algorithm while mitigating the ringing by considering
a certain percentage of outlier pixels.



Figure 5. Overview of experimental data generation.

3.3. Frame Fusion

Due to errors in the estimated displacement using Con-
trast Maximization, ringing may occur in the restored im-
age. In the proposed method, restored images are fused to-
gether to suppress the ringing. However, translational mo-
tion can cause misalignment between the restored images,
making it necessary to compensate for this misalignment
before fusing the images. We can calculate the amount of
misalignment by summing up the displacements estimated
in 3.1.2.

However, as the misalignment between the images can
have errors, the Scale-Invariant Feature Transform (SIFT)
features are utilized to correct them before fusing the im-
ages. Let’s assume that image I is being fused onto image
J . Firstly, the feature points using SIFT are extracted from
both images. Next, the estimated velocity from the events
is employed to calculate the rough misalignment from I to
J , and the feature points extracted from I are then shifted
based on the calculated misalignment. The corresponding
points are searched for within a limited range around the
shifted feature points, resulting in more accurate correspon-
dence points than searching the entire image. Subsequently,
the homography from I to J is estimated from the coordi-
nates of the corresponding points, and I is transformed pro-
jectively. The final result image is obtained by projectively
transforming all the restored images in this manner and cal-
culating the average pixel value at each pixel position.

4. Experiment
4.1. Experimental Settings

4.1.1 Experimental Data

The experiments use both synthetic data generated by a sim-
ulator and real data captured by an event camera.

Figure 5 illustrates the process for generating synthetic
data. Initially, we crop images of a sufficiently large source

Figure 6. Examples of source images

image while moving the window of size QVGA in three
patterns: circle, wave, and spiral. Figure 5 shows how the
center (red dot) of a QVGA-sized window (red rectangle) is
moved in a circular manner (yellow arrow) while the image
is cropped. Additionally, Figure 6 shows examples of the
source images. Next, blurry images are produced by aver-
aging the pixel values of several adjacent frames. Finally,
we generate events by using the cropped images as input to
ESIM [17], a simulator of an event camera. Although this
synthetic data can be used for quantitative evaluation as the
ground truth is available, it does not include noise and thus
is not representative of realistic situations.

The real data was obtained using DAVIS346 MONO.
The optical center position of the camera was fixed to en-
sure uniform blur kernel in the obtained images. While the
ground truth cannot be obtained, the real data can still be
used to assess how well the proposed method performs in
general situations. However, quantitative evaluation cannot
be carried out using real data.

4.1.2 Comparison Method

In this paper, we compare our proposed method with four
existing methods [4, 5, 13, 16]. [4, 5, 13] are image-based,



Table 1. Quantitative evaluation results in synthetic data

Pattern Input [5] [4] [13] [16]
Ours

(no Frame Fusion)
Ours

circle
PSNR 15.848 18.486 16.179 16.105 14.551 20.849 20.008

SSIM 0.627 0.804 0.665 0.696 0.658 0.897 0.871

wave
PSNR 15.424 14.231 15.313 15.425 15.611 23.015 22.351

SSIM 0.612 0.560 0.627 0.637 0.755 0.943 0.924

spiral
PSNR 15.898 14.907 15.699 16.515 14.978 21.065 21.301

SSIM 0.614 0.615 0.618 0.699 0.696 0.890 0.893

Figure 7. Qualitative evaluation results in synthetic data
(a)Input, (b) [5], (c) [4], (d) [13] (e) [16], (f)Ours(no Frame Fusion), (g)Ours, (h)Blur free

while [16] is event-based. [5] estimates blur kernels from
images while accounting for outlier pixels. [4] is a U-
Net type network that is one of the single-frame deblur-
ring methods. It takes an original image and some down-
sampled images as input. [13] is a multi-frame deblurring
method that uses information regarding optical flow be-
tween adjacent frames to restore images. [16] simultane-
ously performs frame interpolation and deblurring by mod-
eling the generation process of events and blurry images and
performing optimization calculations.

4.2. Result and Discussion

4.2.1 Synthetic Data

Table 1 shows the average values of PSNR and SSIM in syn-
thetic data, and Figure 7 shows the example of the restora-
tion images. The average values of PSNR and SSIM of the
restored images are higher than those of other methods, in-
dicating that the proposed method can perform deblurring
the images with high accuracy.

While the images restored by [5] are close to being blur-

free, the quantitative results do not show much improve-
ment from the blurred images. There could be two possible
reasons for this. Firstly, the estimated blur kernel may be
misaligned. The image center of the blur kernel should cor-
respond to the center time pixel of the exposure time of the
motion-blurred image. As the blurred image lacks temporal
information and contains only spatial information about the
blurring, misalignment could occur. However, this problem
does not arise in the proposed method, which estimates the
blur kernel using detailed temporal information from event
data. Secondly, images with biased frequency components
may show low accuracy of restoration. Since [5] uses im-
age gradient information as prior knowledge, optimization
of the blur kernel may fail for such images. The results of
restoration for such images, as shown in Figure 8, exhibit
severe ringing.

The restored images by [4] and [13] are still blurred, and
PSNR and SSIM are not much improved. These methods
are based on deep learning, and their performance depends
on the training data. The nature of images in the synthetic



Figure 8. The results of the restoration of images with biased frequency components
(a)Input, (b)Frequency domain of (a), (c) [5], (d)Ours(no Frame Fusion), (e)Blur free

Figure 9. An example of the failure of frame fusion in our proposed method.

Figure 10. An example of the success of frame fusion in our proposed method.

data is very different from that of images in the training
data, which may have caused the failure of the restoration.
Domain adaptation is effective to avoid such a problem.
Since the proposed method does not use deep learning, sta-
ble results can be obtained for any input data without do-
main adaptation.

In the circle and wave patterns, Ours (no Frame Fusion)
exhibits higher PSNR and SSIM values than Ours. This
could be due to the fact that frame fusion does not work
well for frames with excessive ringing. As shown in Figure
9, when the fused image has severe ringing, feature point
matching by SIFT does not work well, resulting in a poor
quality image that may be worse than the original image.
However, frame fusion is effective for images with minimal
ringing, as shown in Figure 10, and can produce images
close to the Ground Truth. Hence, it can be concluded that
the effectiveness of frame fusion depends on the data being

used.
4.2.2 Real Data

Figure 11 shows the qualitative evaluation results on real
data. The restoration results of the proposed method
demonstrate that the deblurring process is stable for all im-
ages. In particular, the third-row image contains a region of
saturated pixel values, which causes all image-based meth-
ods [4, 5, 13] to fail. Nevertheless, the proposed method
succeeds in restoring the image even in that region because
it uses event data with a high dynamic range. Additionally,
the restored images by [16] have some noisy areas. As [16]
reconstructs images by accumulating information on lumi-
nance changes of event data into each frame, noise in the
event data tends to accumulate in the reconstructed images.

Qualitatively, the restored image before frame fusion is
better than the restored image after frame fusion. This is



Figure 11. Qualitative evaluation results in real data
(a)Input, (b) [5], (c) [4], (d) [13], (e) [16], (f)Ours(no Frame Fusion), (g)Ours

attributed to the adverse impact of frame fusion on image
quality, particularly for images with severe ringing, as pre-
viously discussed.

4.3. Limitation

While the proposed method can currently only remove
2D uniform blur from images, we anticipate that it will be
possible to remove 3D rotational blur in the future. This is
because Contrast Maximization can estimate not only the
translational velocity of an image but also parameters re-
lated to rotation and projective transformation. The same
idea presented in this paper could be applied to remove 3D
rotational blur by modifying the implementation method.

Furthermore, our method is currently unable to account
for local motion in images. However, we believe that this
issue can be resolved by segmenting the image into parts
with similar motions and applying our proposed method to
each image region separately.

5. Conclusion
In this paper, we propose a novel method for estimating

blur kernels from events and deblurring images. Utilizing
event data with a high temporal resolution, we demonstrate
that our approach can accurately estimate the blur kernel.
Since our method does not rely on deep learning, the deblur-
ring process is stable and not dependent on the quantity or
quality of training data. Experimental results demonstrate
the efficacy of our proposed method on both synthetic and
real event data.

At present, our method is only able to support 2D uni-
form blur and does not account for local motion. However,
we believe that these limitations can be resolved through
further improvements in the implementation method.
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