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In this supplementary document, we provide additional
material to complement the main paper. First, we present
recent related work on event-based video reconstruction, es-
pecially focusing on their evaluation details (Sec. 1). Sec-
ond, we share the details of the event representation that we
have employed (Sec. 2). Third, we share implementation
details of the evaluation metrics we considered in our anal-
ysis (Sec. 3). Next, we provide the overview of the datasets
being used in our proposed EVREAL framework (Sec. 4).
Then, we present the details and results from the computa-
tional complexity analysis that we performed (Sec. 5). Fi-
nally, we share additional qualitative results from several
datasets (Sec. 6).

1. Related Work
In recent years, there has been a surge of methods aiming

to reconstruct intensity images from events, each taking into
account different assumptions and employing distinct pro-
cessing methodologies. Early approaches were limited, of-
ten relying on basic assumptions such as known or restricted
camera movement, static scenes, or brightness constancy.
More recent methods utilize deep neural networks and in-
corporate natural image priors in their models to achieve
better results. Here, we limit our discussion to these recent
methods and especially focus on their evaluation details.

Wang et al. [33] proposed a conditional GAN based
model, in which input events are represented by means
of spatio-temporal voxel grids. Their evaluation setup in-
cludes a small amount of data containing 1000 intensity
frames taken from both real and simulated datasets, includ-
ing the sequences from [1]. They compared their method
against [1, 17] for sequences without any ground truth out-
puts, by utilizing the no-reference metric BRISQUE [14].
The authors do not share their evaluation code.

Rebecq et al. [23,24] introduced a recurrent fully convo-
lutional network, named E2VID. The authors used a selec-

tion of seven sequences from the ECD [16] dataset, using a
fixed number of events to form event voxel grids and a toler-
ance of 1 ms to match the reconstructions with ground truth
frames. To improve the output quality, they applied robust
normalization as a post-processing step and then performed
local histogram equalization before computing scores for
MSE, SSIM and LPIPS [37]. They compared their approach
against [1] and [17]. They also reported a temporal consis-
tency score that requires a ground truth optical flow map be-
tween each frame. To obtain this, they used an off-the-shelf
frame-based optical flow network [11], which has its own
prediction errors. The researchers conducted experiments
on challenging scenarios involving rapid motion, low-light
conditions and high dynamic range, without providing any
quantitative scores. Additionally, they reported color image
reconstruction results from the event data available in CED
dataset [27], without providing any quantitative analysis.

Rebecq et al. also evaluated their method on four down-
stream tasks, including image classification, visual-inertial
odometry, object detection, and monocular depth estima-
tion [23,24]. To perform these tasks, they fed reconstructed
frames as inputs to task-specific frame-based methods and
reported either qualitative or quantitative results. For in-
stance, for object classification, they used events from N-
MNIST [18], N-Caltech101 [18], and N-Cars [28] datasets,
and provided accuracy scores achieved by a ResNet-18 [10]
network. Similarly, for visual-inertial odometry, they em-
ployed events from the ECD dataset, and investigated mean
translation errors obtained via VINS-Mono [21]. For ob-
ject detection and monocular depth estimation, they used
YOLOv3 [25] and MegaDepth [13], respectively, and only
shared qualitative results in a supplementary video. Addi-
tionally, they analyzed the computational efficiency of their
approach by reporting the frame synthesis time. The authors
do not release their evaluation code publicly.

Scheerlinck et al. [26] proposed FireNet, a lightweight
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recurrent network, as a replacement for E2VID, and demon-
strated that it can attain similar performance with much less
memory consumption and faster inference. In their eval-
uation setup, they followed the methodology in [24], and
performed experiments on the selected frames from the se-
quences in the ECD dataset. They utilized a fixed num-
ber of events to form event voxel grids, and applied local
histogram equalization to reconstructions and ground truth
frames before estimating quantitative metrics such as MSE,
SSIM, and LPIPS. Additionally, they performed qualitative
analysis on color image reconstruction and challenging sce-
narios involving high-dynamic range and fast motion. They
focused on evaluating computational efficiency and com-
pared several resolutions on GPU and CPU by examining
the number of model parameters, memory consumption,
FLOPs, and inference times. However, they did not con-
duct any downstream task experiments, and their evaluation
codes are not made publicly available.

Stoffregen et al. [30] proposed an enhanced version of
E2VID, named E2VID+, by retraining it on synthetic train-
ing data exhibiting similar statistics with real-world test
data. They also employed the same strategy for improv-
ing the FireNet architecture, resulting in FireNet+. They
evaluated their methods on a larger set of real-world se-
quences from three datasets, namely ECD and MVSEC [39]
datasets, and their proposed HQF dataset. For ECD and
MVSEC, they used the sequences commonly used in ear-
lier work, and reported MSE, SSIM, and LPIPS scores.
They always had a matching ground truth frame for each
reconstruction, as they used events between each consecu-
tive ground truth frame to form voxel grids. It is not clear
whether they applied normalization or histogram equaliza-
tion before calculating these scores. Moreover, they did not
perform any experiments on challenging scenarios or down-
stream tasks, nor did they perform computational efficiency
analysis. The evaluation code is not publicly available.

Cadena et al. [4] proposed SPADE-E2VID, which in-
tegrates spatially-adaptive denormalization (SPADE) [20]
layers into the E2VID architecture to enhance the quality
of the reconstructed videos. The authors evaluated their ap-
proach using seven sequences from the ECD dataset, start-
ing from the very first frames of each sequence, and re-
ported MSE, SSIM, and LPIPS scores for quantitative com-
parison with E2VID and FireNet. They also introduced an
RMS contrast metric to demonstrate that their method pro-
duces higher contrast reconstructions. To assess temporal
consistency, they used a different off-the-shelf frame-based
optical flow network [22] and reported the corresponding
scores. In addition, they performed object detection analy-
sis on a single sequence of the ECD dataset, using events
and YOLOv4 [2] to process reconstructed frames. They es-
timated ground truth object labels for two object classes by
applying the same object detection network to ground truth

intensity images and shared average precision scores for this
downstream task accordingly. They analyzed the computa-
tional efficiency of their approach by reporting reconstruc-
tion time for inputs with various resolutions. While they
released an evaluation code, we were unable to reproduce
their results with it.

Weng et al. [35] improved the E2VID architecture by
adding a Transformer-based module to better exploit the
global context of event tensors, thus naming their model as
ET-Net. Their experiments were conducted using the ECD,
MVSEC, and HQF datasets, with the same sequence cuts as
in [30]. In their experiments, events between consecutive
ground truth frames were used to form voxel grids. To eval-
uate their approach, they calculated MSE, SSIM, and LPIPS
scores, without any normalization or histogram equalization
applied to the reconstructed images. They compared their
method with E2VID, E2VID+, FireNet, and FireNet+, and
shared qualitative results on challenging scenarios involving
high-dynamic-range and rapid motion in their supplemen-
tary material. However, they did not perform a computa-
tional efficiency analysis or an experiment on a downstream
task. The authors provided an open-source evaluation code,
and we are able to use to reproduce their results.

Paredes-Vallés and de Croon [19] proposed a self-
supervised learning method called SSL-E2VID, which em-
ploys the event-based photometric constancy assumption
[8] to estimate optical flow and intensity images simulta-
neously. As done in earlier work, events between each
consecutive ground truth frame were used to form voxel
grids. Their experiments were conducted on ECD and
HQF datasets, and they made quantitative comparisons with
E2VID, E2VID+, FireNet, and FireNet+. Local histogram
equalization was employed before calculating quantitative
scores. Since they did not introduce a new architecture,
computational efficiency analysis was not performed. Qual-
itative results were given also for challenging scenarios such
as high-dynamic-range and high-speed. No downstream
task analysis was performed, and their evaluation code was
not made publicly available.

Zhu et al. [40] proposed a spiking neural network ar-
chitecture that achieves comparable performance to E2VID,
E2VID+, FireNet, and SPADE-E2VID with higher compu-
tational efficiency. They used the ECD, MVSEC, and HQF
datasets in their evaluation and reported quantitative scores
using MSE, SSIM, and LPIPS metrics. In reconstructing
intensity images, they used the events between each consec-
utive ground truth frame as input. They applied histogram
equalization before calculating these scores. In addition,
they provided an analysis of energy consumption. However,
they did not release an open-source evaluation code.

Zhang et al. [38] presented a novel approach for event-
based image reconstruction by formulating it as a linear
inverse problem based on optical flow. They conducted a



quantitative comparison with E2VID, E2VID+, and SSL-
E2VID using MSE, SSIM, and LPIPS metrics. They fo-
cused on test sequences with limited camera motion, specif-
ically selected from the ECD dataset, and utilized events
from N-Caltech101 [18] dataset. They aligned reconstruc-
tions with respective reference frames using Enhanced Cor-
relation Coefficient Maximization [6]. They reported me-
dian scores for each sequence instead of mean scores and
presented distribution plots of scores of each method on var-
ious sequences. They also analyzed the effect of histogram
equalization on quantitative scores and emphasized the im-
portance of taking various factors into account while inter-
preting these scores. They showcased their method’s abil-
ity to perform color reconstruction and demonstrated tem-
poral consistency on two example frames from the DSEC
dataset [9]. They did not conduct experiments on down-
stream tasks and did not share their evaluation code.

2. Details of Event Representation
Following the common practice in the literature, we

form voxel grids from grouped events in order to utilize
deep CNN architectures for event-based data. Let Gk be
a group of events that span a duration of ∆T seconds, Tk

be the starting timestamp of that duration, and B be the
number of temporal bins used to discretize the timestamps
of continuous-time events in the group. The voxel grid
Vk ∈ IRW×H×B for that group is formed by normaliz-
ing the timestamps of events from the group to the range
[0, B − 1]. Each event contributes its polarity to the two
temporally closest voxels using a linearly weighted accu-
mulation similar to bilinear interpolation. Specifically, the
voxel grid is computed as follows:

Vk(x, y, t) =
∑
i

pi max(0, 1− |t− t∗i |)δ(x− xi, y − yi)

(1)
where δ is the Kronecker delta that selects the pixel location,
and t∗i is the normalized timestamp which is calculated as:

t∗i = (B − 1)(ti − Tk)/(∆T ) (2)

In all our experiments, we set the number of temporal bins
B to 5.

3. Implementation Details for Quantitative
Image Quality Metrics

MSE. The Mean Squared Error is a commonly used metric
that does not require any parameters. When comparing two
images, the only factor that can impact the MSE result is the
range of pixel values that the images possess. We calculate
the MSE using floating-point pixel values within the range
[0, 1]. Lower MSE values indicate better results.

SSIM. We utilize the scikit-image image processing
library’s [32] implementation for structural similarity. We
adjust the parameters to use the Gaussian weighting scheme
explained in [34]. Like MSE, we compute SSIM using im-
ages with floating point pixel values in the range of [0, 1].
Higher scores of SSIM indicate better results.

LPIPS. We utilize the official implementation of
LPIPS [37]1, v0.1.4, and employ the variant that uses
the pre-trained AlexNet [12] network. To comply with
the implementation, we normalize the images so that their
pixel values fall in the range of [−1, 1]. In the LPIPS score
calculation, a lower score indicates better quality.

BRISQUE. For BRISQUE [14], we use the implementa-
tion in IQA-PyTorch toolbox [5]2, v0.1.5, with default set-
tings. The implementation supports 3-channel RGB im-
ages. Therefore, we convert intensity images into RGB im-
ages by concatenating three copies of the grayscale image
along the third channel before calculating the scores.

NIQE. For NIQE [15], we again use the implementation in
IQA-PyTorch toolbox [5], v0.1.5, with default settings. The
implementation supports 3-channel RGB images. There-
fore, we convert intensity images into RGB images by con-
catenating three copies of the grayscale image along the
third dimension before calculating the scores.

MANIQA. For MANIQA [36], we also use the implemen-
tation in IQA-PyTorch toolbox [5], v0.1.5, with default set-
tings. The implementation supports 3-channel RGB im-
ages. Therefore, we convert intensity images into RGB
images by concatenating three copies of the grayscale im-
age along the third channel before calculating the scores.
MANIQA works by taking random crops of size 224×224
pixels from the images, whereas the ECD dataset used in
our analysis has a lower resolution. To address this dis-
crepancy, we upscale the images to the desired size before
calculating the scores.

4. Dataset Details

Event Camera Dataset (ECD). Following the practice ex-
plained in [24], we use seven different sequence with di-
verse characteristics from the ECD dataset [16]. These se-
quences are short, taken indoors, and mostly contain simple
scenes of office environments with stable objects. The data
was captured by a DAVIS240C sensor [3], which is mostly
moving with 6 degrees of freedom (DOF) and with increas-
ing speed. The camera generates events and frames from the
same pixel array, which has a spatial resolution of 240×180

1The code is accessible from https : / / github . com /
richzhang/PerceptualSimilarity

2The code is accessible from https : / / github . com /
chaofengc/IQA-PyTorch

https://github.com/richzhang/PerceptualSimilarity
https://github.com/richzhang/PerceptualSimilarity
https://github.com/chaofengc/IQA-PyTorch
https://github.com/chaofengc/IQA-PyTorch


pixels. The ground truth intensity frames are available at an
average rate of 22 Hz.

To allow methods to generate meaningful results, we ex-
clude the initial few seconds of each sequence from quan-
titative evaluation. Additionally, when using full-reference
metrics, as commonly done in earlier work, we do not in-
clude the latter parts of the sequences as they may contain
motion blur due to the increased speed of camera move-
ment. However, when evaluating with no-reference metrics,
we specifically concentrate on these sections that have fast
camera movement, to which the corresponding ground truth
intensity images are of lower quality.

Multi Vehicle Stereo Event Camera (MVSEC) dataset.
The MVSEC dataset [39] contains longer sequences cap-
tured by a pair of DAVIS 346B cameras, each having a
spatial resolution of 346 × 260 pixels. These sequences
depict both indoor and outdoor environments. To evalu-
ate the quality of the videos generated by the methods us-
ing full-reference metrics, we followed the approach taken
by [30] and considered six commonly used sequences from
this dataset. Four of these sequences were captured indoors
by a flying hexacopter, while the remaining two were taken
outdoors during the daytime from a driving vehicle. The
average rate of ground truth intensity frames was approxi-
mately 30 Hz for indoor sequences and 45 Hz for outdoor
sequences. Additionally, we used three night sequences
from this dataset, each captured from a vehicle as well, for
our experimental evaluation involving no-reference metrics
as the ground truth frames at night-time tend to be underex-
posed.

High-Quality Frames (HQF) dataset. The HQF
dataset [30] contains fourteen sequences that exhibit a wide
range of different motion behaviors, including static, slow,
and fast camera motion, and cover both indoor and outdoor
scenes. Two different DAVIS240C cameras are used to cap-
ture the data, providing distinct noise and contrast threshold
characteristics. The cameras generate events and intensity
frames from the same 240×180 pixel array. The scenes and
camera parameters are adjusted to ensure that the ground
truth frames are well-exposed and have minimal motion-
blur. The average rate of ground truth intensity frames is
22.5 Hz. We use the entire sequences from this dataset for
evaluation using full-reference quantitative metrics.

Beam Splitter Event and RGB (BS-ERGB) Dataset. The
BS-ERGB Dataset [31] is originally collected for the event-
based video frame interpolation task. The dataset consists
of events recorded by a Prophesee Gen4M event camera [7]
having a spatial resolution of 1280×720 pixels, and RGB
frames captured by a global shutter RGB Flir camera with
a resolution of 4096×2196 pixels. Both of these data are
then post-processed to have the same spatial resolution of

Network
Architecture

Number of
Params (M)

Inference
Time (ms)

E2VID [19, 24, 30] 10.71 5.1
FireNet [26, 30] 0.04 1.6
SPADE-E2VID [4] 11.46 16.1
ET-Net [35] 22.18 32.1

Table 1. Computational complexity of different network archi-
tectures in terms of the number of model parameters (in millions)
and inference time (in milliseconds).

970×625 pixels. Most of the sequences are short and cap-
tured with a static camera observing fast motions in the
scene. Since events are confined to small regions where mo-
tion is observed, reconstructing intensity frames for other
parts of the scene is not feasible. There are a few sequences
recorded with a handheld camera where every pixel gener-
ates many events. We evaluate the models on ten of these
handheld sequences.

High Speed and HDR Datasets These high-speed and
HDR sequences are recorded by Rebecq et al. [24], using
a Samsung DVS Gen3 event camera [29] with a spatial
resolution of 640×480. We use all three HDR sequences
from this dataset, namely the hdr selfie, hdr sun, and
hdr tunnel sequences.

5. Computational Complexity
We also analyzed the computational complexity of each

method by considering two metrics: the number of model
parameters and inference time. The former is an essential
metric as it indicates the memory requirements, while the
latter reflects the real-time performance by determining the
maximum FPS that can be achieved. To measure the infer-
ence time, we used a workstation equipped with a Quadro
RTX 5000 GPU and considered data with a spatial resolu-
tion of 240×180. We report the average inference time for
each method in ms. Table 1 compares the computational
complexity of image reconstruction methods. In this table,
we use the same row for the methods that share the same
deep architecture. Overall, in terms of the number of pa-
rameters and inference times, FireNet is much smaller and
faster than E2VID, while SPADE-E2VID is slightly larger
and slower. ET-Net has the highest number of parame-
ters which is twice as large as SPADE-E2VID, the second
largest model, and its inference time is approximately 6×
slower than E2VID and 20× slower than FireNet.

6. Additional Qualitative Results
Here, we provide qualitative comparisons for various se-

quences from the ECD, MVSEC, HQF, BS-ERGB, ECD-
FAST, and MVSEC-NIGHT datasets. We present these re-
sults in Figures 1-6.
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Figure 1. Additional qualitative comparisons on the ECD dataset.
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Figure 2. Additional qualitative comparisons on the MVSEC dataset.
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Figure 3. Additional qualitative comparisons on the HQF dataset.

ha
nd

h.
1

ha
nd

h.
3

ro
of

to
p1

ro
of

to
p2

st
re

et

E2VID FireNet E2VID+ FireNet+ SPADE-E2VID SSL-E2VID ET-Net Ground Truth

Figure 4. Additional qualitative comparisons on the BS-ERGB dataset.
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Figure 5. Additional qualitative comparisons on the fast parts of the ECD dataset (ECD-FAST).
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