

Event-based Visual Odometry: A Short Tutorial

Dr. Yi Zhou eeyzhou@ust.hk

HKUST-DJI Joint Lab, Dept. ECE at HKUST

- Introduction
- A Review of Event-based VO
- ESVO System
- Conclusion

About Event-based Cameras

Working principle:

◆Asynchronous and independent pixels

Properties:

- •High speed, low latency (~ 1 μ s)
- ◆High dynamic range (140 dB instead of 60 dB)
- ◆Ultra-low power (mean: 1mW)

- Introduction
 A Review of Event-based VO
 ESVO System
- Conclusion

Challenges

Event streams cannot be fed directly to existing methods designed for standard cameras!

Question to Answer

"How to leverage the advantages of event-based cameras to solve a given task by optimally processing the event stream?"

- Introduction 0
- A Review of Event-based VO
- ESVO System Conclusion ۲

Event-based VO

EVO [RAL 17]

G. Gallego et. al [T-PAMI 18]

Ultimate SLAM [RAL 18]

H. Rebecq [BMVC 17]

H. Kim [ECCV 16]

ESVO [T-RO 21]

- Introduction •
- A Review of Event-based VO
- ESVO System Conclusion

Outline

- **1.** A literature review
- 2. An introduction to ESVO system
- **3.** Some take-home messages

- Introduction
- A Review of Event-based VO
- ESVO System
- Conclusion

Review on Event-based Methods

Event-based Depth Estimation (3D Reconstruction)

[ISVC 11, TNN 12, Front. Neurosci. 14, 18, Meas. Sci. Technol. 14, Neural Proc. Lett. 16, Sci. Rep. 17, Front. Neurorobot. 19, IJCV 18]

Event-based Camera Pose Estimation

[*RSS 15, TPAMI 18, RAL 17, ICRA 19, IJCNN 11, BMVC 14, ICCP 17, ROBIO 12, ICVS 13, IROS 14*]

D Event-based VO Systems

[ECCV 16, RAL 17]

PTAM [ISMAR 07]

- Introduction
- A Review of Event-based VO
- ESVO System
- Conclusion

Event-based Mapping (3D Reconstruction)

Instantaneous Stereo

Two-Step paradigm

- Finding eipolar matching
- 2 Triangulation

□ Temporal Stereo (monocular event camera!)

- ① Require prior knowledge of the camera's motion
- 2 Use occurred over a temporal window

H. Rebecq, et. al., "EMVS: Event-based multi-view stereo—3D reconstruction with an event camera in real-time," IJCV. 2018.

G. Gallego, *et*, *al.*, "A unifying contrast maximization framework for event cameras, with applications to motion, depth, and optical flow estimation," CVPR 2018

- Introduction
- A Review of Event-based VO
- ESVO System Conclusion

Event-based Camera Pose Tracking

Motion and Scene Complexity : Simple -> Complex

Planar Motion

3D Rotation

H. Kim, et. al., "Simultaneous mosaicing and tracking with an event camera," BMVC, 2014

G. Gallego, et. al., "Accurate angular velocity estimation with an event camera," RAL 2017

6-DoF Motion

G. Gallego, et. al., "Event-based, 6-DOF camera tracking from photometric depth maps," T-PAMI 2018.

S. Bryner, et. al, "Event-based, direct camera tracking from a photometric 3D map using nonlinear optimization," ICRA 2019

- Introduction
- A Review of Event-based VO
- ESVO System
- Conclusion

Event-based VO Systems

H. Kim, S. Leutenegger, and A. J. Davison, "Real-time 3D reconstruction and 6-DoF tracking with an event camera," in Eur. Conf. Comput. Vis. (ECCV), 2016.

H. Rebecq, T. Horstschafer, G. Gallego, and D. Scaramuzza, "EVO: A geometric approach to event-based 6-DOF parallel tracking and mapping in real-time," IEEE RA-L, 2017.

Y. Zhou, G. Gallego, and S. Shen. "Event-based stereo visual odometry (ESVO)." IEEE Transactions on Robotics, 2021. (Project page: https://sites.google.com/view/esvo-project-page/home)

- Introduction
- A Review of Event-based VO
- ESVO System Conclusion

Real-time 3D reconstruction and 6-DoF tracking with an event camera [ECCV 16]

Method Outline

Three interleaved probabilistic filters (EKFs)

- Filter 1: Tracks global 6-DoF camera motion
- Filter 2: Estimates the log intensity gradients in a ٠ keyframe image
- Filter 3: Estimates the inverse depths of a keyframe ٠

- Introduction
- A Review of Event-based VO 0
- ESVO System Conclusion ۲

EVO [RAL 17]

Pipeline Chart

Video courtesy:

https://www.youtube.com/watch?v=bYqD2qZJIxE&t=8s&ab_channel=UZHRoboticsandPerceptionGroup

H. Rebecq, et. al, RAL' 2017

- Introduction
- A Review of Event-based VO
- ESVO System
- Conclusion

A Brief Literature Review Core Problem: Data Association on Events

Core Problem of Event-based VO

VO Problem $p(\mathbf{x}_t, \mathbf{m}_t | \mathbf{z}_t)$ Recursive State Estimation

Prediction
$$p(\mathbf{x}_t, \mathbf{m}_t | \mathbf{z}_{t-1}) = \int \int p(\mathbf{x}_t, \mathbf{m}_t | \mathbf{x}_{t-1}, \mathbf{m}_{t-1}) \times p(\mathbf{x}_{t-1}, \mathbf{m}_{t-1} | \mathbf{z}_{t-1}) d\mathbf{x}_{t-1} d\mathbf{m}_{t-1}$$

Implementation Perspective

Tracking p(

 $p(\mathbf{x}_t | \mathbf{z}_t, \mathbf{m}_t^*)$ $\mathbf{x}_t^* \blacksquare \mathbf{m}_t^*$

 $p(\mathbf{m}_t | \mathbf{z}_t, \mathbf{x}_t^*)$

Mapping Subproblem

Correction $p(\mathbf{x}_t, \mathbf{m}_t | \mathbf{z}_t) \propto p(\mathbf{z}_t | \mathbf{x}_t, \mathbf{m}_t) \times p(\mathbf{x}_t, \mathbf{m}_t | \mathbf{z}_{t-1})$

Core Problem of State Estimation from a Methodology Perspective Data AssociationMeasurement Model

- Introduction
- Review of Event-based VO
- ESVO System Conclusion

Core Problem of Event-based VO

Measurement Model

 $z_{\mathbf{x}} = \pm C$, $h_{\mathbf{x}}(\mathbf{x}^{(t|t-\tau)}) = \mathbf{I}_l\left(\mathbf{p}_w^{(t)}\right) - \mathbf{I}_l\left(\mathbf{p}_w^{(t-\tau_c)}\right) ,$ where $\mathbf{I}_{l}(\mathbf{p}_{w}) = (1 - a - b)\mathbf{I}_{l}(\mathbf{v}_{0}) + a\mathbf{I}_{l}(\mathbf{v}_{1}) + b\mathbf{I}_{l}(\mathbf{v}_{2})$.

Filter2: Pixel-Wise EKF Based Gradient Estimation

Measurement Model

$$\begin{aligned} z_{\mathbf{g}} &= \pm \frac{C}{\tau_c} \ ,\\ h_{\mathbf{g}} &= (\mathbf{g}(\hat{\mathbf{p}}_k) \cdot \mathbf{m}) \ ,\\ \text{where} \ \ \mathbf{m} &= \frac{\mathbf{p}_k^{(t)} - \mathbf{p}_k^{(t-\tau_c)}}{\tau_c} \end{aligned}$$

Filter3: Pixel-Wise EKF Based Inverse Depth Estimation

$$\begin{array}{l} \text{Measurement}\\ \text{Model} \end{array} \quad \begin{array}{l} z_{\boldsymbol{\rho}} = \pm C \ ,\\ h_{\boldsymbol{\rho}} = \mathtt{I}_l \left(\mathbf{p}_w^{(t)} \right) - \mathtt{I}_l \left(\mathbf{p}_w^{(t-\tau_c)} \right) \end{array}$$

H. Kim, S. Leutenegger, and A. J. Davison, "Real-time 3D reconstruction and 6-DoF tracking with an event camera," in Eur. Conf. Comput. Vis. (ECCV), 2016.

Model

- Introduction
- A Review of Event-based VO
- ESVO System
- Conclusion

Core Problem of Event-based VO

How to Make A Difference?

Can we find a novel X-metric information based on which the event-based data association is established?

□ Is the monocular configuration the best choice? (How about stereo?)

□ ...

ESVO: Event-based Stereo Visual Odometry

Stereo Event-based Camera Rig

-

Our System

Mapping

Time-Surface Map

Illustration of the geometry of the proposed mapping method.

Time-Surface Map (Left)

Problem Formulation

Probabilistic Fusion

Exploiting Time Surfaces as Distance Fields

Time Surface $\tau(\mathbf{x})$

Anisotropic Distance Field

$$\bar{\boldsymbol{\tau}}(\mathbf{x}) = 1 - \boldsymbol{\tau}(\mathbf{x})$$

Time Surface Negative $\ ar{m{ au}}(\mathbf{x})$

3D-2D Registration

(a) Inverse depth map in the ref- (b) Registration on the negative erence frame.

time-surface map.

Objective Function

$$\boldsymbol{\theta}^{\star} = \arg\min_{\boldsymbol{\theta}} \sum_{\mathbf{x} \in \mathcal{D}^{\mathcal{F}_{ref}}} \| \bar{\boldsymbol{\tau}}_{left}^{\mathcal{F}_{k}}(W(\mathbf{x}, \rho; \boldsymbol{\theta})) \|^{2}$$

$$W(\mathbf{x}, \rho; \boldsymbol{\theta}) \doteq \pi_{left}(T(\pi_{ref}^{-1}(\mathbf{x}, \rho), G(\boldsymbol{\theta})))$$

$$\boldsymbol{\theta} \doteq [c_{1}, c_{2}, c_{3}, t_{x}, t_{y}, t_{z}]^{T}, \ G(\boldsymbol{\theta}) : \mathbb{R}^{6} \rightarrow SE(3)$$

Forward Compositional LK Method $F(\Delta \boldsymbol{\theta}) \doteq \sum_{\mathbf{x} \in \mathcal{D}^{\mathcal{F}_{\text{ref}}}} \| \underbrace{\bar{\boldsymbol{\tau}}_{\text{left}}^{\mathcal{F}_{k}}(W(W(\mathbf{x}, \rho; \Delta \boldsymbol{\theta}); \boldsymbol{\theta}))}_{r_{\mathbf{x}}} \|^{2}$ $W(\mathbf{x}, \rho; \boldsymbol{\theta}) \leftarrow W(\mathbf{x}, \rho; \boldsymbol{\theta}) \circ W(\mathbf{x}, \rho; \Delta \boldsymbol{\theta})$

Objective Function

(a) Objective w.r.t c_1 . (b) Objective w.r.t c_2 . (c) Objective w.r.t c_3 .

(d) Objective w.r.t t_x . (e) Objective w.r.t t_y . (f) Objective w.r.t t_z .

Evaluation

TABLE II: Parameters of various stereo event-camera rigs used in the experiments.

Dataset	Cameras	Resolution (pix)	Baseline (cm)	FOV (°)
Zhou et al.(ECCV2018)	DAVIS240C	240×180	14.7	62.9
Zhu et al.(RAL2018)	DAVIS346	346×260	10.0	74.8
Mueggler et al.(IJRR2017)	Simulator	346×260	10.7	74.0
Ours	DAVIS346	346×260	7.5	66.5

Our stereo event camera rig set up.

- Introduction
- A Review of Event-based VO
- ESVO System
- Conclusion

Summary and Take-Home Messages

202

Conclusion

Summary

- Provide a brief literature review on event-based VO and point out the core problem in the design.
- Disclose technical details of our recent work Event-based
 Stereo Visual Odometry.

Project Page: https://sites.google.com/view/esvo-project-page/home PDF: https://arxiv.org/pdf/2007.15548.pdf Code: https://github.com/HKUST-Aerial-Robotics/ESVO Take-Home Messages

1. Trade-off between latency and computation complexity.

Bash v.s. Event-by-Event

2. Computational resource and power consumption.

Goal: compact and energy-efficient solution.

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY 香港科技大學

CVPR 2021 Event-based Vision Workshop

