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Method
•We present a network of leaky integrate and fire (LIF) neurons that learns
representations similar to those of simple and complex cells in the primary
visual cortex of mammals.

•Based on a wide range of homeostatic mechanisms, such as refractory periods
(RP), spike rate adaptations (SRA) or lateral inhibitions.

•A (LIF) neuron membrane potential V (t) variation in time can be summed up
as:
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with wi as the synaptic inputs, and the other terms as membrane potential
regulators.

Spiking neural network diagram

•The network learns using the Spike Timing-Dependent Plasticity (STDP)
rule.

Learning orientation, motion and disparity

•The network learns visual feature detectors for orientation, disparity, and motion
in a fully unsupervised fashion.

Simple cell receptive fields learned on vertical bars (left image) moving at varying
speed. top right image are receptive fields learned with 3 multi-synaptic delayed
synapses, the bottom right image represents receptive fields learned with a pair of
stereoscopic cameras. The shift respectively represents the speed and disparity of the
moving bars.

Evaluating the network cell basis

•Using real event videos of various moving shapes, we learn a diverse basis of simple
and complex cell receptive fields.

• Learned neuronal representations resemble closely biological characteristics, such
as gabor functions for the simple cells.

•By showing diverse inputs, the network is able to learn efficient feature detectors.

Screenshot of an event video of various moving shapes (left). Resulting simple cell
learned receptive fields.

Measuring the orientation selectivity

•We measure the complex cell responses to oriented grating stimulus from their
average spiking activity.

•We demonstrate that after learning, simple and complex cells become very
selective to specific orientations and directions respectively.

Top: complex cells representations made from an average (left, heatmap) and the
maximum (right, receptive fields) of the simple cell connection strengths. Bottom:
complex cell average responses in direction space measured with rotating oriented
grating stimulus.

Estimating depth

•We performed scene acquisitions from a stereoscopic pair
of event cameras mounted on a robotic mobile platform
in an urban environment.

•We estimate the average scene depth for specific regions
of the visual field from the shift between simple cell
stereo receptive fields. We compare it to a traditional
frame-based depth analysis.

•This demonstrate the network ability to learn disparity
representations in complex stereo environments. Robotic platform.

Comparison of the depth estimation histograms computed with traditional frames
(blue) and the learned receptive fields of the simple cells (grey).

Future work

•Our network is well-suited for implementation on modern
neuromorphic spiking network hardware.

•We would like to extend this work to the autonomous self-calibration
of spike-based active binocular vision systems.
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