Spike timing-based unsupervised learning of orientation, disparity, and motion

S ... representations in a spiking neural network.
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Method

o We present a network of leaky integrate and fire (LIF) neurons that learns
representations similar to those of simple and complex cells in the primary
visual cortex of mammals.

e Based on a wide range of homeostatic mechanisms, such as refractory periods
(RP), spike rate adaptations (SRA) or lateral inhibitions.

e A (LIF) neuron membrane potential V'(¢) variation in time can be summed up

as:
. EAY) — At ts—t—At
V(t+ At) =V (t)en — Vaga(t) esra —nprpe m  + w;(t)
with w; as the synaptic inputs, and the other terms as membrane potential
regulators.
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Spiking neural network diagram

® The network learns using the Spike Timing-Dependent Plasticity (STDP)
rule.

Learning orientation, motion and disparity

e The network learns visual feature detectors for orientation, disparity, and motion
in a fully unsupervised fashion.

Simple cell receptive fields learned on vertical bars (left image) moving at varying
speed. top right image are receptive fields learned with 3 multi-synaptic delayed
synapses, the bottom right image represents receptive fields learned with a pair of
stereoscopic cameras. [he shift respectively represents the speed and disparity of the
moving bars.
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Evaluating the network cell basis

e Using real event videos of various moving shapes, we learn a diverse basis of simple
and complex cell receptive fields.

e Learned neuronal representations resemble closely biological characteristics, such
as gabor functions for the simple cells.

¢ By showing diverse inputs, the network is able to learn eflicient feature detectors.
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Screenshot of an event video of various moving shapes (left). Resulting simple cell
learned receptive fields.

Measuring the orientation selectivity

e We measure the complex cell responses to oriented grating stimulus from their
average spiking activity:.

e We demonstrate that after learning, simple and complex cells become very
selective to specific orientations and directions respectively.
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Top: complex cells representations made from an average (Ieft, heatmap) and the
maximum (right, receptive fields) of the simple cell connection strengths. Bottom:
complex cell average responses in direction space measured with rotating oriented
grating stimulus.
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Estimating depth

e We performed scene acquisitions from a stereoscopic pair
of event cameras mounted on a robotic mobile platform
in an urban environment.

e We estimate the average scene depth for specific regions
of the visual field from the shift between simple cell
stereo receptive fields. We compare it to a traditional
frame-based depth analysis.

e This demonstrate the network ability to learn disparity
representations in complex stereo environments.

Robotic pIatform.
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Comparison of the depth estimation histograms computed with traditional frames
(blue) and the learned receptive fields of the simple cells (grey).

Future work

e Our network is well-suited for implementation on modern
neuromorphic spiking network hardware.

e We would like to extend this work to the autonomous self-calibration
of spike-based active binocular vision systems.
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