SONY

Event-Based Computer Vision at Sony AVS

CVPR 2021

Christian Brändli, CEO, Sony AVS

Will HIR President

SONY

SONY 2 16-Jun-21 Research Division 1 – Sony Advanced Visual Sensing AG © 2021 Sony Semiconductor Solutions Corporation

So Who Is Sony Semiconductor?

Sony Group Corporation

	Sony Interactive Entertainment	Game & Network Services
	Sony Music Group(Global) (Sony Music Entertainment, Sony Music Publishing)	Music
	Sony Music Entertainment Japan	
	Sony Pictures Entertainment	Pictures
	Sony Corporation	Electronics Products & Solutions
	Sony Semiconductor Solutions	Imaging & Sensing Solutions
	Sony Financial Holdings	Financial Services

We Build The World's Best Image Sensors

Image Sensor Sales

Worldwide No.1 share of more than 50% (Revenue basis)

Who is Sony AVS?

And What Does Sony AVS Do?

We built and build Event-Based Computer Vision Algorithms

SONY 6 16-Jun-21 Research Division 1 – Sony Advanced Visual Sensing AG

© 2021 Sony Semiconductor Solutions Corporation

Enough PR ...

... Let's Talk Technology

What Is A Temporal Contrast Event?

A temporal contrast event is a tuple of an address with polarity \tilde{p} and timestamp \check{t} . Such an event is created when ...

$$e = \{x, y, \breve{p}, \breve{t}\}: \exists e_{x,y}[j] \left(\breve{p} = \begin{cases} 1 \text{ for } \int_{T[j-1]}^{\breve{t}} C_{x,y}^{t}(t) + \dot{N}_{x,y}(t) \, dt \ge \Theta^{ON} \\ 0 \text{ for } \int_{T[j-1]}^{\breve{t}} C_{x,y}^{t}(t) + \dot{N}_{x,y}(t) \, dt \le \Theta^{OFF} \end{cases} \right)$$

... of the temporal contrast... ... is below ...
... the integral since the last timestamp... ... and the noise or above a threshold

What is Temporal Contrast?

Temporal contrast is the rate of illumination change...

$$C_{x,y}^{t}(t) = \frac{1}{I_{x,y}(t)} \frac{d I_{x,y}(t)}{dt} = \frac{d \left(ln \left(I_{x,y}(t) \right) \right)}{dt}$$

... normalized by the absolute intensity...

... which is equivalent to the log intensity change rate.

So What is Encoded By an Event?

Integrating temporal contrast results in ...

 $\int_{t_0}^{t_1} C_{x,y}^t(t) dt = \Delta C_{x,y}^t(t_0, t_1) = ln\left(I_{x,y}(t_1)\right) - ln\left(I_{x,y}(t_0)\right) = ln\left(\frac{I_{x,y}(t_1)}{I_{x,y}(t_0)}\right)$... a "temporal contrast step", ...

... which is a fixed step in log intensity ...

Then What Makes Up a Temporal Contrast Step?

The "event magnitude" is ...

... which in turn is made up of different components.

So What To Do With Events

Entropy:

- Smart Triggering _
- Smart Processing _

Active Lighting:

- Structured Light
- Active Marker Tracking
- Visible Light -Communication

Reconstruction:

- Imaging -
- Mapping -
- **Classification:**
- Object

Tracking:

- Camera:
 - VIO
- World:
 - User
 - Objects -

Some Examples

So What To Do With Events

$$EM_{x,y}[j] = \int_{T[j-1]}^{T[j]} \frac{dlog(I(k,t))}{dt} + \frac{dR}{dt} - \frac{dR}{dx}\frac{dx}{dt} - \frac{dR}{dy}\frac{dy}{dt}dt$$

illumination change
Active Lighting

High-Speed 3D

So What To Do With Events

$$EM_{x,y}[j] = \int_{T[j-1]}^{T[j]} \frac{dlog(I(k,t))}{dt} + \frac{dR}{dt} - \frac{dR}{dx}\frac{dx}{dt} - \frac{dR}{dy}\frac{dy}{dt}dt$$
optical flow
Tracking

Very Fast Real-Time Tracking Of Dots

Better For Fast Motion than Open CV

And More Robust On Repetitive Structures

SONY 19 16-Jun-21 Research Division 1 – Sony Advanced Visual Sensing AG

© 2021 Sony Semiconductor Solutions Corporation

So What To Do With Events

$$EM_{x,y}[j] = \int_{T[j-1]}^{T[j]} \frac{dlog(I(k,t))}{dt} + \frac{dR}{dt} - \frac{dR}{dx}\frac{dx}{dt} - \frac{dR}{dy}\frac{dy}{dt}dt$$
spatial contrast
Reconstruction

Sensor Fusion of iToF and EVS for Efficient Depth Sensing

To Capture What Our Engineers Are Doing In the Office

If You Like To Work With The Latest And Greatest Sensors

Follow us on LinkedIn:

https://linkedin.com/company/sony-advanced-visual-sensing

Or Have A Look At Sony Jobs Every Now And Then:

https://www.sonyjobs.com/jobs.html

SONY is a registered trademark or trademark of Sony Corporation.

The product names and service names of each Sony product are registered trademarks or trademarks of Sony Corporation or group companies. Other products and company names are the trade names, registered trademarks or trademarks of the respective companies.