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Manipulation in Clutter
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Multimodal perception and control



Now on to DVS..
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Outline 

Ø Event-Based Vision at SAIC-NY
Ø Efficient event-based classification(ICIP 2020)
Ø Near-chip low bandwidth event-based classification(ISVLSI 2020)
Ø Fast Motion Understanding(ICRA 2021)
Ø Ongoing Work: Perception<->Action Systems

Ø Conclusion
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On-Device Event Filtering with Binary Neural Networks for Pedestrian Detection Using 
Neuromorphic Vision Sensors

Fernando Cladera Ojeda, Anthony Bisulco, Daniel Kepple, Volkan Isler and Daniel D. Lee

2020 IEEE International Conference on Image Processing 

Volkan Isler              Anthony Bisulco Daniel D. LeeDaniel KeppleFernando Cladera
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Problem: Always On Applications

Ø Pedestrian detection systems are 
always-on and energy 
constrained

Ø Traditional Convolutional Neural 
Networks require compute-
intensive operations 

Ø We present a low complexity 
architecture that enables always-
on event-based pedestrian 
detection
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Our Method: DVS Detection Systems

Unfiltered
Event Stream

DVS Event Stream           Point Process Filter (PPF)               Binary Neural Network (BNN)

Filtered 
Event Steam

Windowed 
Binary Input
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Pedestrian Dataset

Ø Pedestrian dataset: collected 
videos of people entering 
and leaving office
Ø 273 ~2.5s clips of 

pedestrian
Ø 548 ~0.75s clips of 

negative examples

Ø Negative examples: clothes, 
boxes, sticks and other visual 
stimuli

Ø Trained network on 80% 
tested on 20%

Negative Examples

Positive Examples
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Results

PPF: Point process filter
BNN: Inference with Binary Network

CNN: Inference using FP CNN
Q-CNN: Inference using quantized CNN

Ø PPF 
Ø Reduces noise and 

dimensionality of the data
Ø Increases detection 

accuracy by 23% 
compared to raw event 
stream

Ø Detection Module
Ø Only 1% performance 

degradation compared to 
PPF-CNN

Ø Lowest network size, 
enabling embedded 
device applications
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Conclusion 

Ø Low-complexity object detection architecture for DVS:
Ø PPF stage that boosts classification score by 23%
Ø Detection module with low memory footprint
Ø Enables DVS for low complexity environments:  home security and smart cities

Future work:
Near-Edge implementation
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Near-chip Dynamic Vision Filtering for Low-Bandwidth Pedestrian Detection
Anthony Bisulco, Fernando Cladera Ojeda, Volkan Isler and Daniel D. Lee

2020 IEEE Computer Society Annual Symposium on VLSI

Volkan Isler              Anthony Bisulco Daniel D. LeeFernando Cladera
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Ø Goal: DVS IoT Detection System

Ø Problem: 
Ø DVS high sampling rates lead 

to high bandwidths for IoT 
applications

Ø IoT systems are low bandwidth

Ø Solution:
Ø Develop on-chip algorithms for 

event-stream compression
Ø Couple compressed stream 

with edge compute 
classification using Binary 
Neural Network

Problem: IoT Classification Systems
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Our Method
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Results

Ø Bandwidth reduction and increase 
of F1 score with few resources

Ø Coincidence Detection/Max 
Pooling: spatial reduction

Ø Aggregation/Huffman: 
temporal reduction

Ø Full architecture:
Ø 99.6% reduction in 

bandwidth w.r.t. raw 
stream

Ø 20% increase in 
testing F1 score

Full ArchOurs:

Better

MP[8]

AGMP

AG

COMP

COAGCO

RAW

COAGMP
-16

COAGMP
-8

COAGMP
-4

CO: Coincidence Detection    
AG: Aggregation

MP-[#]: Max Pool (#,#) 
Full Arch: CoAgMP-8 + Huffman
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Conclusion

Ø Filtering module: reduces 
bandwidth and increases 
testing F1 score 

Ø Bandwidth reduction enables 
DVS usage on IoT networks

Ø Future work
Ø Filtering module integration 

into DVS ASIC
Ø Improvements in the 

compressor to further 
reduce bandwidth

Ø Integrate multiple sensors to 
enhance detection 
performance

Sensor Network

Edge
Router

DVS

Low
 Bandw

idth Steam

FPGA
Filter DVS FPGA

Filter

DVS
FPGA
Filter

Edge 
Compute

ES ES

ES

Edge 
Compute

DVS
FPGA
Filter
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Low
 Bandw
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Fast Motion Understanding with Spatiotemporal Neural Networks and Dynamic Vision Sensors
Anthony Bisulco, Fernando Cladera Ojeda, Volkan Isler and Daniel D. Lee

2020 IEEE Computer Society Annual Symposium on VLSI

Volkan Isler              Anthony Bisulco Daniel D. LeeFernando Cladera
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Scenario

Ø Mobile robot systems need to quickly understand rapid motion in dynamic environments
Ø Forests, Kitchens, Roads

Image Courtesy of : https://phys.org/news/2020-10-treeswift-autonomous-robots-flight-forests.html, https://news.samsung.com/global/the-samsung-club-des-chefs-kitchen-heats-up-with-ai-assi
stance-at-ifa-2019

https://phys.org/news/2020-10-treeswift-autonomous-robots-flight-forests.html


24

Problem: High-Speed Motion Understanding

Ø Current sensor based-solutions are 
not suited for the energy and 
computational needs of micro 
mobile robot systems

Ø Active Sensors: IR Depth 
Cameras, LIDAR, Radar

Ø Dynamic vision sensors(DVS) low 
latency sensing and energy 
consumption are attractive for 
mobile robot collision avoidance

Passive Sensors

Active Sensors

Depth Image

Dynamic Vision Sensor Event Video Feature Tracking

Power Indicator

Power Indicator
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Biological Motion Understanding 

Ø Animals motion cues from 
looming response for 
avoidance [2][3]

Ø Looming response is 
used in action 
planning for escape 
behavior

Ø Inspecting spatiotemporal 
patterns of the event stream 
could model these efficient 
avoidance maneuvers 
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Method

1. Acquire: Event-based 
camera outputs set of 
events (x, y, p, t)

2. Encode: History of events 
using bank of exponential 
filters per event polarity

3. Decode: Extract 
Spatiotemporal features 
from filtered event set 
using CNN

4. Estimate: Time to 
Collision and Impact 
Location 

𝑦 𝑛 = 𝛼𝑦 𝑛 − 1 + 1 − 𝛼 𝑥 𝑛
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Method: Data Collection  

Ø Goal: record the DVS 
events and object 
location while the object 
is approaching the 
sensor

Ø Approach:
Ø Attach marker to 

object
Ø Ball: Drop ball 

towards sensor
Ø Dart: Flying dart
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Method: Data Example  
Ø Toy Dart Info: 
Ø Speed: 16-23m/s
Ø Initial Range: 0.6m

-1m
Ø Time Range: 26ms

-46ms

Ø Ball Info: 
Ø Speed: 1.2-4.8m/s
Ø Initial Height: 0.4

m-1.2m
Ø Time Range: 183m

s-352ms
Ø Data: 240x240 unsi
gned 8-bit integer

Ball

Toy Dart
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Method: Augmentation

Ø Data collection procedure 
can be time consuming and 
expensive for limited 
samples

Ø Developed augmentation 
procedure to increase dataset 
size from real-world samples
Ø Ball: Perform set of static 

translations and rotations 
to event-data

Ø Toy-Dart: Perform set of 
random rotations to 
event-data
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Results: Example Fall
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Conclusion

Ø We presented:
Ø An efficient architecture for fast motion understanding using event

based sensors
Ø Data collection procedure
Ø Data augmentation method to create additional real-world data for spatiotempor

al model training

Ø We showed that event-based sensors can be used to estimate the impact location 
and time to collision for fast moving objects (>20m/s) in mobile robotic 
applications.

Ø Future Steps: Integrate the full system into a real-world setup
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High Speed Perception-Action Systems with Event-Based Cameras

Ongoing
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Perception<->Action Test Bed

Start Detector:
LED+ PhotoCell

Glass with Accelerometer

USB 3 
Cable

Driver
(libusb)

Packet 
Parser Event-Based Algorithm

Serial Command:
Baud 57600

ArduinoOpto-coupler

24V<-5V
Motor

Controller

Linear    
Actuator

Dart 
Max Speed ~31m/s
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Latencies

1. Sense
a. Observability Delay(~100ms): Time press trigger-> Dart is minimally observable on th

e camera(> 5 pixels wide) pixels Dart: ~12mm, 5m away shot
b. Communication Delay(~4ms): Time between stimulus onset to pixel until the stimulus 

pixels is available in an array on the host, (FPGA Readout, USB Communication, Packet 
Decoding)

2. Act
a. Serial Latency(~1ms): time from issuing the serial action command on the computer u

ntil the motor receives this command
b. Action Latency(~33ms): time from 24V signal rising edge until reach end position in 

motion 
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Observability Delay: Fix with Optics
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Result of Optics
Blue: Photocell(Start of Gun Shot)
Yellow: Motor Pos(Motion Encoder Position)
Green: Accelerometer(Collision with DVS)
Purple: Motion Trigger(Start of avoidance procedure)

Time from Trigger->Collision: 21ms->106ms
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Dodging Results: Real Time
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Slow Motion Dodge Video



39

Conclusion

Ø Developed perception action systems and explored the system latencies present
Ø Optics can help improve visibility of objects 
Ø Action latency remains large components in end-to-end system latencies

Ø Future Work
Ø Improve our terminal state estimation system
Ø Investigate other application of rapid state estimation 
Ø Evaluate predicative methods for event-based perception<->action
Ø Unsupervised methods for perception
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