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mimics the functions of cells in the human eye. 

network computes a new average volt- 
age. When the light is suddenly de- 
creased to its ongrnal intensity, the out- 
put voltage plunges below its original 
value because the network now has a 
larger average potential than it had orig- 
inally. Finally, as the network renuns to 
the original average value, the output 
also renuns to its former state. In a bio- 
logical retina the slow response of the 
horizontal cells ensures that rapid full- 
field changes in intensity-which might 
correspond to the shadow of a predator 
passing over an animal-pass through 
the bipolar cells without attenuation. 

I n subsequent tests, we found our 
sihcon retina to be subject to many 
of the same optical illusions that 

humans perceive. The most obvious il- 
lusion is that of simultaneous contrast: 
a gray square appears darker when 
placed against a white background 
than when placed against a black back- 
ground. Other illusions include the 
Mach bands (apparent bnght and dark 
bands adjacent to transitions from dark 
to light) and the Herring grid, in which 
gray spots appear at the intersection of 
a grid of white lines [see box on oppo- 
site page 1 . 

Such optical illusions provide impor- 
tant insight into the biological retina's 
role in reducing the bandwidth of visu- 
al information and extracting only the 
essential features of the image. The il- 
lusions are created because the retina 
selectively encodes visual information. 
That our retinal model also sometimes 
generates an illusory output gives us 
additional confidence in our interpreta- 
tion of the principles by which the bio- 
logical retina operates. 

The behavior of the artificial retina 
demonstrates the remarkable power of 
the analog computing paradigm em- 
bodied in neural circuits. The digital 
paradigm dominating computation to- 

day assumes that information must be 
digitized to guard against noise and 
degradation. In a digital device, voltag- 
es within a certain range are translat- 
ed into bits having a value of, say, 
one, whereas voltages within a differ- 
ent range are translated into zeros. 
Each device along the computational 
pathway restores the voltages to their 
proper range. Digitization imposes pre- 
cision on an inherently imprecise phys- 
ical system. 

A neuron, in contrast, is an analog 
device: its computations are based on 
smoothly varying ion currents rather 
than on bits representing discrete ones 
and zeros. Yet neural systems are su- 
perbly efficient information processors. 
One reason is that neural systems work 
with basic physics rather than trying 
constantly to work against it. 

Although nature knows not- of 
bits, Boolean algebra or linear systems 
theory, a vast array of physical phe- 
nomena implement important mathe- 
matical functions. The conservation of 
charge, for example, dictates that elec- 
t i c  currents will add and subtract. 
Thermodynamic properties of ions 
cause the current flowing into a cell to 
be an exponential function of the volt- 
age across the membrane. 

Working with physics helps to ex- 
plain why the most efficient digital in- 
tegrated circuits envisioned will con- 
sume about 10-9 joule per operation, 
whereas neurons expend only 10-16 
joule. In digital systems, data and com- 
putational operations must be convert- 
ed into binary code, a process that re- 
quires about 10,000 digital voltage 
changes per operation. Analog devices 
carry out the same operation in one 
step and so decrease the power con- 
sumption of silicon circuits by a factor 
of about 10,000. 

Even more important, however, the 
capacity of analog neural circuits to 

operate in unpredictable environments 
depends on their ability to represent 
information in context. They respond 
to differences in signal amplitude rath- 
er than to absolute signal levels, thus 
largely eliminating the need for precise 
calibration. The context for a neural 
signal may be the local average light in- 
tensity-as it is when a photoreceptor 
signal is balanced against the slgnal 
from the horizontal cell network at a 
triad synapse. Or it may be the previ- 
ous behavior of a neural circuit itself, 
as in the long-term adaptation of a 
photoreceptor to changing light levels. 
The context of a signal may also be 
some more complex collection of neu- 
ral patterns, including those that con- 
stitute learning. 

The interplay of context and adapta- 
tion is a fundamental principle of the 
neural paradigm. It also imposes some 
interesting constraints on neurally in- 
spired circuits. Because only changes 
and differences convey mfonnation, 
constant change is a necessity for neu- 
ral systems-rather than a source of 
difficulty, as it is for digital systems. 
When showing an image to the digital 
retina, for example, we must constantly 
keep it in motion, or the retina will 
adapt and no longer perceive it. This 
requirement for change firmly situates 
a neural circuit in the world that it ob- 
serves, in contrast to digital circuits, 
whose design implicitly assumes sepa- 
ration between the system and the out- 
side world. 

e have taken the first step in 
simulating the computations 
done by the brain to process a 

visual image. How readily can this 
strategy be extended to other types of 
brain computations? It may seem that 
the essentially two-dimensional nature 
of today's integrated circuits would 
severely limit efforts to model neural 

SOCCERBALL in motion shows how the delayed response of ball leaves behind a trail of excitation: bright where the dark 
the horizontal cell network affects the retina's perception. The spots have just passed; dark where bright parts have been. 
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Modeling Neural Structures in Silicon 

HUMAN RETINA 

SILICON RETINA 

T he human retina consists of 
cells that conduct neural sig- 

nals both within layers and from 
one layer to another. The silicon 
retina models the functions of the 
outermost three layers-photore- 
ceptors (rods and cones), horizon- 
tal cells and bipolar cells. The rods 
and cones transform light into elec- 
trical signals; the horizontal cells, 
meanwhile, raspand to the average 
light intensety in their neighbor- 
hood. Bipolar cells trzmimit a signal 
corresponding to the ratio af the 
signals from rods and horizontal 
cells through the ganglion cells, 
where It Is firmer processed before 
being delhwt-&d to the brain. 

GANGLION CELLS BIPOLAR CELLS HORlZONTAL CEUS Ros18 AhlDarXWE8 

DOPED SILICON 
POLYSIUCON WIRES 
METAL WIRES 

,I-- / *  
E ach silicon photoreceptor mim- 

ics a cone cell. It contalns both 
a photosensor and adaptive circuit- 
ry that adjusts its response to cope 
with changing llght levels. A net- 
work of variable resistors mimics 
the horiz~ntal cell layer, supply- 
ing feaback based on the aver- 
age amount of llght striking near- 
by photorecepmrs. And bipolar cell 
circuitry amplifies the difference 
between the signal from the pho- 
toreceptor and the local average. 
The physical layout of the chip 
(above) contains circuitry in stag- 
gered blocks. Silicon areas doped 
with impurities (green) are the ba- 
sis for transistors and photosen- 
sors, polysilicon (red) forms wires 
and resistors, and metal lines (blue) 
act as low-resistance wires. The 
functional diagram at the left shows 
the arrangement of receptor circuit- 
ry and the hexagonal grid of vari- 
able resistors that makes up the 
horizontal cell network. The re- 
sponse of the retinal circuit closely 
approximates the behavior of the 
human retina. 

HOW SILICON RETINAL CELLS ARE CONNECTED 

BIPOLAR ' 
CELL CIRCUIT 

78 SCIENTIFIC AMERICAN May 1991 



?

Where we came from…

A Chance to Move Perception from 
Engineering to Basic Science!

observe understand model

application



Physiology
- Models
- Hardware

- Cognition
- Robotics
- Computation
- BMI

• Develop new bidirectional methodology to understand the brain
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Event-Based Cameras V1.0: Panorama

• Event-based cameras have become a commodity
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Event Acquisition

• Information is sent when it happens
• When nothing happens, nothing is sent or processed
• Sparse information coding
• Time is the most valuable information
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can only be obtained by increasing the frequency of acquisition that
would then have the effect of producing larger amount of data.

2.2 Quantifiying changes of luminance vs constant sam-

pling

Current acquistion processes are still resources’ consuming. Most
acquisition techniques rely on a constant sampling on the t axis.
This methods originates from the early times of audio signal, as
shown in (figure.3(a)) this process generates unnecessary redundant
data specially when values are unchanged over un long period of
time. This consuming process is acceptable if only few signals are
to be considered, but this turns to be a huge waste of resources
if a higher number of simultaneous signals are considered as it
is the case in images. In order to overcome these limitations and
provide an accurate temporal sampling of f(t), it is more efficient to
detect variations of f(t) just at the exact time at which they occur
(figure.3(b)), namely sampling on the other axis.

(a) t

f(t)

(b)

f(t)

t

Fig. 3. Two ways to sample functions values, in (a) using a
classic constant scale on the t axis, in (b) using a constant scale
but on the values of f(t).

This process is data oriented and discards redundancies at the
lowest level. Changes are detected precisely when they occur over-
coming all limitations of constant time sampling on the t axis.
This codification provides a compact representation of light changes,
this time oriented process is also compatible with observations that
temporal changes in scenes never occur spatially at the same time. It
is very rare that the whole content of an image changes completely
between two consecutive frames. If f(t) changes are quantized
according to a predefined quantity �f , it becomes possible to define
a function Ev providing temporal events corresponding to the exact
change time of �f of f(t) (figure.3). The Luminance is no longer the
element to be retrieved, knowing the locations of temporal changes
and the value of �f are sufficient to give an estimate. This model
is drastically different form today’s paradigm of vision as it states
that luminances’ values are not the key feature of vision but only
time changes. Luminances as we will show in the next section can
always be estimated using a incremental summation process. This
paradigm introduces a major change as it states that vision does
not rely on a static sampled set of low dynamics images but on
a collection of asynchronous functions each corresponding to a pixel
which independently and asynchronously encode at different spatial
locations the changes of light.

2.3 Codifications’ strategies to encode light changes

There are several ways to quantize fx,y according to its values.
Let us define {tk}, the set of times of the signal sampling, with
assumption that 8k 2 N, tk+1 > tk and t0 is the initial time. Some
standard sets are the following :

T = {tk | |F(fx,y(tk)� fx,y(tk�1))| = �f} , (5)

the signal is sampled each time the variation of the magnitude of F
is equal to �f . In principle there is no forward method to choose
F , it has to be selected according to the task to be performed. In
what follows we will set F as the identity function in order to study
the general properties of codification based on relative changes. In
practice there is no elegant formulation of T as it is difficult to make
an assumption on f to have f�1 as this contradicts the random nature
of light changes in scenes. Once T is set, Ev(x, y, t) can then be
defined as :

Ev(x, y, t) = �(t, tk).sign(f 0x,y(t)). (6)

�() is the Kronecker delta function and sign() is the sign function
of a real number taking value in {�1, 1}.
Ev(x, y, t) gives a more compact representation of fx,y using �f ,

t0 tk

fx,y(t)

�f f̂x,y(t)

�1 �1 �2 �2

Ev(t)
+1 +1 +1

-1-1 -1-1 -1

+1

Fig. 4. Codification of pixels gray-level variations into temporal
contrast events following T1 codification process.

its values are in the set {�1, 0, 1}. The value 0 corresponds to
an absence of change of fx,y which remains in an amplitude less
than �f , while +1 and �1 indicate a change which direction is
given according to the sign. Once Ev is known, it is possible to
approximate fx,y by a piecewise constant function bfx,y , knowing
�f and fx,y(t0):

bfx,y(t) =
+1X

i=0

fi(t), (7)

where

f0(t) =

(
fx,y(t0) for 0  t < t0

0 otherwise
, (8)

fi(t) =

(
Evt1,ti(x, y)�f for ti  t < ti+1

0 otherwise
, (9)

and

Evtm,tn(x, y) =
nX

k=m

Ev(x, y, tk). (10)

As shown in figure.4, f
0
x,y changes sign during the transitions

between the ↵i and the �i intervals, the next event will then appear
only when the whole amount of change is larger than �f from the
last event in ↵1. The crossing of a �f theshold does not generate
an event.

Figure.5, gives a general overview of the whole process, starting
from the initial signal to be codified and the reconstructed one. It is

They can however be reconstructed, when needed, at fre-
quencies limited only by the temporal resolution of the pixel
circuits (up to hundreds of kiloframes per second) (Fig.2
top). Static objects and background information, if required,
can be recorded as a snapshot at the start of an acquisition
henceforward moving objects in the visual scene describe
a spatio-temporal surface at very high temporal resolution
(Fig.2 bottom).

Fig. 2 (Lower part) The spatio-temporal space of imaging events:
Static objects and scene background are acquired first. Then, dynamic
objects trigger pixel-individual, asynchronous gray-level events after
each change. Frames are absent from this acquisition process. Sam-
ples of generated images from the presented spatio-temporal space are
shown in the upper part of the figure.

4 Event based shape registration algorithm

The event based visual acquisition does not rely on fixed-
frequency sampling, but it is intrinsically asynchronous. The
generated events form a spatio-temporal space that pertains
important properties that will be formulated mathematically
in the first part of this section and subsequently used in the
proposed method. In a second stage we will introduce the
novel event-based shape registration algorithm making full
use of the ”continuous” space-time representation of acquired
data.

4.1 Properties of spatio-temporal acquisition

A stream of visual events can be mathematically defined as
follows: let e(p, t) = (p, t, l)T a quadruplet giving the pixel
position p = (x,y)T , the time t of the event and l, its gray-
level. We can then define the function Se that maps to each
location p, the time t of the last event generated by that pixel:

Se : R2 ! R
p 7! Se(p) = t. (1)

Time being an increasing function, Se is then a monotoni-
cally increasing surface. We then set the first partial deriva-
tives with respect to the parameters as: Sex = ∂Se

∂x and Sey =
∂Se
∂y . We can then write Se as:

Se(p+Dp) = Se(p)+—S T
e Dp+o(||Dp||), (2)

with —Se = (Sex ,Sey)
T .

The partial functions of Se are functions of a single vari-
able whether x or y. Time being strictly increasing, Se is a
nonzero derivatives surface at any point.

It is then possible to use the inverse function theorem,
around p = [x,y]T to rewrite the gradient vector —Se as:

—Se = (
1
vx

,
1
vy

)T , (3)

which provides the inverse of the pixel velocity of events.
∂Se
∂x and ∂Se

∂y provide the measurement of the rate and direc-
tion of change of time according to space namely s/pixels.
Locally around an active pixel the tangent plane to the sur-
face relates to the motion flow and velocity of the moving
object in the focal plane.
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Fig. 3 Local time surface of active events of a moving object over a
period of Dt approximated locally by a plane Pi where ni is its normal
and gi its gravity center. An event e(p, t) belonging to Pi with an inverse
velocity —Se shown in a local coordinate system of Pi.

Let us look at a tracked object. The surface area formed
by pixels actived by the object over a time period D t can be
approximated locally by a plane Pi as shown in Fig.3, where
ni is its normal and gi the gravity center of active pixels. Fol-
lowing Equation(3), the slope of Pi relates to the velocity of
the tracked object. An event e(p, t) belonging to Pi has lo-
cally the same velocity —Se (its inverse) with the object and
can therefore be considered as being part of it. The compu-
tation of the velocity is not ”token-based”, in the sense that



CCAM sensors provide frame-free visual information

CCAM is generating 70 times 
less events than a resolution 
equivalent 1000 fps frame-
based camera

the number of events depends on the 
dynamics of the scene. For standard 
cameras this amount is constant. 

Properties Event Based sensors?

• Amount of Data generated from a moving car per 10 miliseconds
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Figure 4: (A) Storing events into dense image-like representations like features maps, like in CNNs. (B) Instead it is possible
to store events into a list in order to preserve the sparseness of the stream of events.

taking the best of both worlds such as [56] [57] [8]. However,
using frame-based algorithms on purely event-based data
automatically results in several drawbacks:

• it re-introduces redundancy when frames are built from
temporally overlapping batches of events;

• generating frames from events is computationally ex-
pensive and contradicts the founding principles of en-
ergy efficiency of neuromorphic hardware;

• the increase of latency and/or the loss of temporal accu-
racy by binning batches of events;

• the spatially dense representation that is traded for when
events are turned into frames, resulting in more convo-
lutions than needed as will be shown in this paper;

• the memory use is increased as the dense image matrix
representation must be stored instead of a sparse stream
of events, as we also show in this paper.

A sensible approach is to store incoming events in compact
dynamic structures as shown in Fig. 4(B). List based are
surely the most adequate structures to store this type of sparse
information.

Incoming events can be stored as a triplet with location x,
polarity p and timestamp t. A chained list allows to adapt
the constant changing number of valuable events as it has no
predefined size. Instead, two criteria can be used to remove
older events:

• a temporal criterion, noted T , used to remove older
events. Events with a timestamp t | t  tnow � T are
purged from the memory;

• event uniqueness: if two events have the same address x

and polarity p, only the most recent event is kept.
As events are stored as they are received, by ascending

timestamp. To remove older events that do not meet the
temporal criteria any longer, the memory simply needs to be
shifted, by updating the memory pointer to the next available
memory address. This is an iterative process where older
events are removed until the oldest event meets the temporal
criteria.
Perhaps the most adequate practical approach is to use
content-addressable memory (CAM) also known as associa-
tive memory or associative storage [58]. These are partic-
ularly adapted to the Address Event Representation format

used by event based sensors [59]. Local neighborhoods can
be extracted in one clock cycle by comparing input search
data against a table of stored data, that then returns the
address of matching data.

VI. TEMPORAL DYNAMICS AND DATA LOAD IN
EXISTING EVENT-BASED DATABASES
We analyse the content of four event-based datasets that
provide different stimuli and spatial resolutions. The scope
is to compare the memory footprint based on the content
of these databases when considering a static frame based
allocation vs a dynamic scene-driven approach. Three of
the used databases (PokerDVS [60], N-MNIST [61] and
DvsGesture [11]) are widely used as benchmark references
by the neuromorphic community. The fourth, NavGesture,
was recently introduced in [10].
The details of each database are:

• PokerDVS features cropped poker cards pips displayed
at very high-speed in front of the camera. Each clip is 5
to 10ms long. Pips are cropped to a 35 ⇥ 35 pixel array.
The Mean Event Rate (MER) is 170.4 kev/s (kilo-
events per second), which results in an Individual Pixel
Mean Firing Rate (IPMFR) of 138 kev/s, the highest of
all presented datasets, two orders of magnitude higher
than non-cropped datasets;

• N-MNIST features 0-9 digits with a sensor size of
28⇥28. Digits are acquired using a moving event-based
camera in front of a computer screen displaying the
original MNIST dataset as explained in [61]. N-MNIST
performs 3 small displacements of 2-3 pixels, with a
pause of 100ms between each movement. Each clip has
a duration of around 300ms. The dataset has a MER of
13.6 kev/s, the smallest of all four datasets. The IPMFR
is 17 kev/s;

• DvsGesture features hand gestures recorded using a
fixed DVS, centered at the upper body in front of a
static background. Hence, it features no background.
The sensor array size is 128 ⇥ 128. In most sequences,
the upper body is almost static and does generate very
few events; only the arms and hands are usually visible.
It results that most pixels at the periphery of the sensor
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Figure 6: Comparison in memory usage when using a dy-
namic list memory instead of a static matrix memory with
when extracting time-surfaces. The red line represents the
total allocated memory when using a image-like frame-based
representation while the orange line represents only the ac-
tual memory use. The blue line represents the memory con-
sumption when using a dynamic, time-windowed memory.
The dynamic memory has a temporal window of 10 ms. Note
that memory use is computed for 64-bit events, with 32 bits
for the timestamp. The clip is a "home" gesture (a hello-
waving hand) from the NavGesture-walk database and has
a duration of around 1300ms. It can be observed that image-
like representations lead to memory footprint up one order of
magnitude in this example.

out at the native elementary temporal step of event based
cameras (1µ s)

• allow for sparse and adaptive memory allocation follow-
ing the scene driven properties of event based cameras
and temporal requirements of the used incremental al-
gorithms.

•

The ideal memory structure addressing these requirements
are CAM. This type of memory structure allows for entire
high-speed memory searches in a single clock cycle. As-
sociative memories have been extensively used for several
applications [63] including neural networks [64]. They are
particularly adapted for event based processing as unlike ran-
dom access memory (RAM) they are content based. Events
stored on content addressable can be accessed by performing
a query for the content itself, and the memory retrieves the
addresses where that data can be found. This query is parallel
nature by construction an therefore order of magnitude faster
than conventional RAM. They are expensive to build because
of the necessity of internal comparators and registers, that
require larger power consumptions. However, in the case
of event based sensing the required footprint is extremely
reduced and fast memory access is an absolute requirement,
thus making this type of memory particularly adapted to
event based processing.

We will introduce in this section a generic architecture for

event based processing in the context of machine learning
using the context of a classification task using deep temporal
networks. These networks process events incrementally as
they are output by the sensor [21]. We will first introduce the
concept of deep temporal time surface networks, in a second
stage we will present the generic architecture followed by an
implementation study of its hardware costs on FPGA.

A. DEEP TEMPORAL MACHINE LEARNING USING
TIME-SURFACES
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Figure 7: Principle of Temporal Context Representation. Five
lines on information conveyed temporal events at differ-
ent time locations tr, ty, ..., tb. A temporal context T is
computed for each incoming event (here at time t) as a
vector expressing temporal delays between events as a value
between 0 and 1..

Time-surfaces introduced in [21] are local descriptors of
the temporal activity in the spatial neighbourhood of an
event. They allow a compact representation of both spatial
and temporal information. They have been used in a variety
of tasks and have been recently revisited and studied in sev-
eral works such as [65] [20] [66] [52]. In this paper we use the
model presented in [10] that extends [21] to operate on low
power processors in the context of mobile phones. We use a
deep temporal convolution network relying on time surfaces
[21] to study how event-based algorithms could benefit from
a dynamic, adaptive and sparse memory structure.
The general principle of a time surface is shown in Fig.7
in the context of 1D input (thus generating a time vector).
Five temporal events are shown, each appearing at a par-
ticular time t. The notion of an event here is general, to
introduce simply the basic concept behind time surfaces.
An event signals the presence of a particular activity at a
precise location in time. The principle behind the method
is to convert the relative timing between events occurring at
different lines of information into normalized features that
are invariant to the actual timing and emphasize only the
temporal interval between past events and the last event that
happens at the current time t, shown in purple in Fig.7.
This method is event driven in the sense that if no event
happens, nothing is computed. However if an event occurs on
a line of information at the current time, its time becomes the
reference time from which we measure a temporal context,
namely, how far in the past something happened on the other
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Dataset
(Mean Event Rate

& Sensor Size)

PokerDVS
170.4 ev/ms

35x35

N-MNIST
13.6 ev/ms

28x28

DvsGesture
56.9 ev/ms
128x128

NavGesture-walk
188.6 ev/ms

304x240
1. Time Window (ms) 1 10 100 1 10 100 1 10 100 1 10 100
2. Mean Number of events in TW
(percentage of active pixels)

101
(8%)

390
(32%)

486
(40%)

22
(3%)

84
(11%)

229
(29%)

53
(<1%)

340
(2%)

1751
(11%)

285
(<1%)

2818
(4%)

13279
(18%)

3. Max Number of events in TW
(percentage of active pixels)

356
(29%)

848
(69%)

1052
(86%)

223
(28%)

312
(40%)

597
(76%)

467
(3%)

2056
(13%)

9191
(56%)

2599
(4%)

18296
(25%)

68128
(93%)

4. Working Memory Size (kB)
Dynamic - Average case 0.8 3.1 3.9 0.2 0.7 1.8 0.4 2.7 14.0 2.3 22.5 106.2

5. Working Memory Size (kB)
Dynamic - Worst case 2.8 6.8 8.4 1.8 2.5 4.8 3.7 16.4 73.5 20.8 146.3 545.0

6. Allocated Memory Size (kB) 9.8 9.8 9.8 6.3 6.3 6.3 131 131 131 584 584 584
7. Memory ratio dynamic/static
(Average Case) 8% 32% 40% 3% 11% 29% 1% 2% 11% 1% 4% 18%

8. Memory ratio dynamic/static
(Worst Case) 29% 69% 86% 28% 40% 76% 3% 13% 56% 4% 25% 93%

Table 1: This table shows, for 4 event-based datasets, and for 3 different time-window sizes (Line 1), ranging from 1 to 100
ms, the mean (Line 2) and maximum (Line 3) number of events. Using events of size 64 bits (32 bits for timestamp + 32 bits
for spatial location and polarity), it shows the needed memory for the dynamic memory (Lines 4-5) and the corresponding
allocated memory needed for the image-like representation (Line 6). Static memory usage is increased relatively to dynamic
memory usage by factors ranging from 2 to 100 when considering short time-windows (< 10 ms, resp. high frame-rates > 100
FPS). For time-windows of 100 ms (10 FPS equivalent), this memory need in average half the capacity of a static memory, but
worst-cases can go up to the same level. (Lines 7-8). However the use of event-based sensor at such low temporal resolutions
is questionable.
These datasets where chosen because they are widely used and because they present very different characteristics in terms of
sensor array size and rate of events.
Memory usage factors are closely linked to the time-window size, which can be linked to the frame-rate for conventional frame-
based cameras. It is also dependent on the sensor array size. It shows that willing to achieve a temporal precision of 1 to 10 ms
(which corresponds to frame-rates of 100 to 1000 Hz), the image-like representation requires 25 to 100 times more memory
capacity. This means that is also requires faster memory buses to transmit the data.

are located in the sensor. Nevertheless, because of the frame-
based computation, the bottleneck of the system is the
memory interface, what made to relay its performance on
the selected memory ones. NullHop was tested with the
VGG16 on ImageNet with a 67.5% top-1 accuracy using
quantized weights and activations to 16bits. It was also
tested with a relative small CNN trained to classify hand
symbols for the RoShamBo game, beating human opponents
by recongnizing the player’s symbol with over 99% accuracy
in less than 10ms and a peak performance of 203 Gop/s/W
using LPDDR3 memory. Perhaps a fair comparison is to
consider a recent work from IBM research that introduced a
fully neuromorphic pipeline made of an IBM TrueNorth chip
and a DVS [11] to perform a real-time gesture recognition.
The system has been evaluated on the DvsGesture 10-
class dataset, which was recorded using the DVS. However,
if the hardware is fully neuromorphic, the processing is
frame-based, as they introduced a stochastic events-to-frame
conversion to feed a CNN. This CNN performs around 1
billion convolutions per second (1 million convolution per
tick, 1000 ticks per second). This results in one classification
per tick, which are then averaged using a majority vote with
a sliding window, for a final classification score of 96.49%.
On the other hand, the 2-layers event-based architecture we
presented in [10] performs around 250 millions convolutions
for a whole clip (clips have a duration of 6-8 seconds), while

achieving similar results in accuracy at 96.59% over the 10-
class dataset with a single classification at the end of the clip.
Moreover, IBM’s stochastic frames are generated using a
cascade of six temporal filters delaying events. The resulting
output frame is the concatenation of all six filters outputs,
which is nothing more but a stochastic integration of events
over 81 ms. These frames are generated every millisecond.
This automatically introduces a delay that corresponds to
the integration time needed to generate a frame, plus the
need to store an image-like representation for each filter.
On the other hand, if one processes events in an event-based
manner, the delay can be minimal, and the memory needed to
dynamically store events greatly reduced, as shown in section
VI.

VIII. GENERIC TIME ADAPTIVE MEMORY
ARCHITECTURE FOR EVENT BASED PROCESSING
An optimal architecture for event based computation must
address two main inter-winded requirements:

• allow for incremental processing ensuring a fast access
for each incoming event to local required resources
by reducing as much as possible the retrieval of rele-
vant local information around incoming events (access
times) to match the high temporal properties of event
based cameras and ensure computation can be carried
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Figure 3: Sample results from our method. The columns depict raw events, time manifold,
result without manifold regularisation and finally with our manifold regularisation. Notice
the increased contrast in weakly textured regions (especially around the edge of the monitor).

the results of [1]. We point out that no ground truth data is available so we are limited to
purely qualitative comparisons.

In Fig. 4 we show a few images from the sequences. Since we are dealing with highly
dynamic data, we point the reader to the included supplementary video3 which shows whole
sequences of several hundred frames.

Figure 4: Comparison to the method of [1]. The first row shows the raw input events that
have been used for both methods. The second row depicts the results of Bardow et al., and
the last row shows our result. We can see that out method produces more details (e.g. face,
beard) as well as more graceful gray value variations in untextured areas, where [1] tends to
produce a single gray value.

4.4 Comparison to Standard Cameras
We have captured a sequence using a DVS128 camera as well as a Canon EOS60D DSLR
camera to compare the fundamental differences of traditional cameras and event-based cam-
eras. As already pointed out by [1], rapid movement results in motion blur for conventional

3
https://www.youtube.com/watch?v=rvB2URrGT94

Figure 2: Block diagram of the proposed approach. The output of the event camera is collected into frames over a specified
time interval T , using a separate channel depending on the event polarity (positive and negative). The resulting synchronous
event frames are processed by a ResNet-inspired network, which produces a prediction of the steering angle of the vehicle.

without resorting to partitioning the solution space; the an-
gles produced by our network can take any value, not just
discrete ones, in the range [�180�,180�]. Moreover, in con-
trast to previous event-based vision learning works which
use small datasets, we show results on the largest and most
challenging (due to scene variability) event-based dataset to
date.

3. Methodology
Our approach aims at predicting steering wheel com-

mands from a forward-looking DVS sensor [1] mounted on
a car. As shown in Fig. 2, we propose a learning approach
that takes as input the visual information acquired by an
event camera and outputs the vehicle’s steering angle. The
events are converted into event frames by pixel-wise accu-
mulation over a constant time interval. Then, a deep neural
network maps the event frames to steering angles by solving
a regression task. In the following, we detail the different
steps of the learning process.

3.1. Event-to-Frame Conversion
All recent and successful deep learning algorithms are

designed for traditional video input data (i.e., frame-based
and synchronous) to benefit from conventional processors.
In order to take advantage of such techniques, asynchronous
events need to be converted into synchronous frames. To
do that, we accumulate the events1 ek = (xk,yk, tk, pk) over
a given time interval T in a pixel-wise manner, obtaining
2D histograms of events. Since event cameras naturally
respond to moving edges, these histograms of events are
maps encoding the relative motion between the event cam-
era and the scene. Additionally, due to the sensing principle
of event cameras, they are free from redundancy.

Inspired by [18], we use separate histograms for positive

1An event ek consists of the spatiotemporal coordinates (xk,yk, tk) of a
relative brightness change of predefined magnitude together with its polar-
ity pk 2 {�1,+1} (i.e., the sign of the brightness change).

and negative events. The histogram for positive events is

h+(x,y) .
= Â

tk2T, pk=+1
d (x� xk,y� yk), (1)

where d is the Kronecker delta, and the histogram h� for
the negative events is defined similarly, using pk =�1. The
histograms h+ and h� are stacked to produce a two-channel
event image. Events of different polarity are stored in dif-
ferent channels, as opposed to a single channel with the bal-
ance of polarities (h+� h�), to avoid information loss due
to cancellation in case events of opposite polarity occur in
the same pixel during the integration interval T .

3.2. Learning Approach
3.2.1. Preprocessing. A correct normalization of input
and output data is essential for reliably training any neural
network. Since roads are almost always straight, the steer-
ing angle’s distribution of a driving car is mainly picked in
[−5�,5 �]. This unbalanced distribution results in a biased
regression. In addition, vehicles frequently stand still be-
cause they are exposed, for example, to traffic lights and
pedestrians. In those situations where there is no motion,
only noisy events will be produced. To handle those prob-
lems, we pre-processed the output variable (i.e. steering an-
gles) to allow successful learning. To cope with the first is-
sue, only 30 % of the data corresponding to a steering angle
lower than 5� is deployed at training time. For the latter we
filtered out data corresponding to a vehicle’s speed smaller
than 20km h−1. To remove outliers, the filtered steering an-
gles are then trimmed at three times their standard devia-
tion and normalized to the range [�1,1]. At testing time,
all data corresponding to a steering angle lower than 5� is
considered, as well as scenarios under 20km h−1. The re-
gressed steering angles are denormalized to output values
in the range [�180�,180�]. Finally, we scaled the network
input (i.e., event images) to the range [0,1].

3.2.2. Network Architecture. To unlock the power of
convolutional architectures for our study case, we first have
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• Current locks are caused
by the arbitrer that
scrambles event times 
and makes computation 
difficult

• Event Cameras are 
becoming compressed
Imagers.
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Existing Neuromorphic Processing Hardware is based on what we know of the brain

Qualcomm Zeroth (2013) IBM TrueNorth (2014) Intel Loihi (2017) BrainChip (2019)

replicate

Existing hardware is based on the concept of replicating biological
neurons into silicon

Limited use cases! 

Where we are heading to



understand

Understanding rather than replicating

There is a need to find the right level of abstraction 

Replicating nature’s solutions is not always the optimal path to solve
an engineering problem. 
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Where We Are Heading To

• We should explore new forms of events’ acquisition
• Find a better link between images and events and see how to

connect with decades of CV without losing the advantages of
events

• We need a dedicated processor adapted to the temporal
precision and sparseness of data of events and the amount of
generated data

• Event cameras are the future if we explore their temporal
properties

• New kind of engineers that undertstand neurosciences where
« biological » events are studied


