Fusing Frame and Event data for High Dynamic Range Video

Robert Mahony

CVPR 2021 Workshop on Event-based Vision Saturday, 19 June 2021 (Sunday 20 June, 12:30am, AEST)

Event Camera

- Asynchronous events
- Temporally dense information
- No image blur.
- High dynamic range

Frame camera

- Synchronous images
- Spatially dense information
- Adjustable exposure
- Images absolute intensity
- Images static scenes.

Events and Frame data from picnic dataset

Event Frame Fusion

- By fusing event and frame data it should be possible to have it all
- Images that are spatially and temporally dense
 - Full image available at any time stamp.
- Images with High Dynamic Range (HDR) in absolute intensity scale.
- Able to image both static scenes and highly dynamic scenes without blur.

High Dynamic Range Reconstruction

Australian National University

Raw Frame

> E2VID Event only

Asynchronous Kalman Filter Event-Frame

> ECNN Event only

DSEC dataset Gehrig et. al

Event Frame Fusion

ANU

High Dynamic Range Reconstruction

Raw Frame

> E2VID Event only

Asynchronous Kalman Filter Event-Frame

> ECNN Event only

DSEC dataset Gehrig et. al

Australian

Event Frame Fusion

Temporal interpolation

Raw Frame

Asynchronous Kalman Filter Event-Frame

Event-based Double Integral (EDI)

> Shapes data set Mueggler et al

Event Frame Fusion

An event camera yields a series of events $\{e_k\}$

$$e_k = (\sigma_k, t_k, u_k, v_k)$$

where $(\sigma_k, t_k, u_k, v_k)$ are the polarity, time stamp and pixel location of event k.

Event Frame Fusion

Image reconstruction

Event Frame Fusion

Direct integration

$$\hat{L}(t;u,v) = \int_{-\infty}^{t} E(\tau,u,v) d\tau$$

$$\frac{E_{(u,v)}(t)}{\frac{1}{s}} \qquad \hat{L}_{(u,v)}(t)$$

Transfer function interpretation of direct integration

High levels of noise in the event stream stay in the image stream and make direct integration impractical.

Event Frame Fusion

Integration without high pass

Integration with high pass

Event Frame Fusion

Transfer function realisation

$$\hat{L}_{(u,v)}(s) = \frac{s}{s+\alpha} \frac{1}{s} E_{(u,v)}(s)$$

ODE system realisation

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{L}_{(u,v)}(t) = -\alpha\hat{L}_{(u,v)}(t) + E_{(u,v)}(t)$$

Image state: $\hat{L}_{(u,v)}(t)$ is the internal state of the filter.

Event Frame Fusion

Complementary filter

Event Frame Fusion

$$\hat{L}(s) = \hat{L}_{\text{LP}} + \hat{L}_{\text{HP}} = \frac{\alpha}{(s+\alpha)}\hat{Y}(s) + \frac{s}{(s+\alpha)}\frac{\hat{E}(s)}{s}$$

Ordinary differential equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{L}_{(u,v)}(t) = -\alpha(\hat{L}_{(u,v)}(t) - Y_{(u,v)}(t)) + E_{(u,v)}(t)$$

Solve on the time period $t \in (t_k, t_{k+1})$ for $\hat{L}_{(u,v)}(t_k)$ known. For $Y_{(u,v)}(t)$ constant (zero-order-hold) and $E_{(u,v)}(t) \equiv 0$ then

$$A \qquad \hat{L}_{(u,v)}(t_{k+1}) = e^{-\alpha(t_{k+1}-t_k)} \hat{L}_{(u,v)}(t_k) + (1 - e^{-\alpha(t_{k+1}-t_k)}) (\hat{L}_{(u,v)}(t_k) - Y_{(u,v)}(t_k))$$

Solve on the time period $t \in [t_{k+1}, t_{k+1}]$ for $\hat{L}_{(u,v)}(t_{k+1}^-)$ known. Integrate through the Dirac delta function

$$\mathsf{B} \quad \left(\hat{L}_{(u,v)}(t_{k+1}^+) = \hat{L}_{(u,v)}(t_{k+1}^-) + \sigma_k \delta_{(u_k,v_k)}(u,v) \right)$$

- Asynchronous: Only compute when an event arrives.
- Computationally efficient: One scalar exponential.

• Image state: Estimate $\hat{L}(t, u, v)$ is stored in memory and can be accessed whenever required.

Event Frame Fusion

19-Jun-21

15

The gain α used in the image reconstruction filter is tuned by hand. Typical value $\alpha = 6$ rad/s.

However, adaptively tuning the gain will produce much better response across the full image.

• Pixels where the conventional camera is properly exposed should trust the conventional camera response.

• Pixels where the conventional camera is under or over exposed should trust the event camera response.

How should the gain α be adaptively tuned.

Event Frame Fusion

- Exploit the asynchronous nature of the sensor with algorithm design and implementation.
- Use both frame and event data.

• A shallow algorithm (no deep learning)

As the quality of event camera sensors improves so will the output of the AKF

Event Frame Fusion

Yonhon Ng

System Theory and Robotics group

Cedric Scheerlinck

THANKS

Ziwei Wang

Event Frame Fusion

Noise in the event data

19-Jun-21

21

$$e_{\vec{p}}(t) = \sum_{i=1}^{\infty} (c\sigma_{\vec{p}}^{i} + \eta_{\vec{p}}^{i}) \delta(t - t_{\vec{p}}^{i}), \qquad \eta_{\vec{p}}^{i} \sim \mathcal{N}\left(0, Q_{\vec{p}}^{\text{proc.}}(t) + Q_{\vec{p}}^{\text{iso.}}(t) + Q_{\vec{p}}^{\text{ref.}}(t)\right)$$

Process noise: $Q_{\vec{p}}^{\text{proc.}}(t_{\vec{p}}^i) = \sigma_{\text{proc.}}^2(t_{\vec{p}}^i - t_{\vec{p}}^{i-1})$ Isolated pixel noise: $Q_{\vec{p}}^{\text{iso.}}(t_{\vec{p}}^i) = \sigma_{\text{iso.}}^2 \min\{t_{\vec{p}}^i - t_{N(\vec{p})}^*\}$ $\begin{pmatrix} 0 & \text{if } t^i - t^{i-1} > 0 \end{pmatrix}$

 $\textbf{Refractory period noise: } Q^{\text{ref.}}_{\vec{p}}(t^i_{\vec{p}}) = \begin{cases} 0 & \text{if } t^i_{\vec{p}} - t^{i-1}_{\vec{p}} > \overline{\rho} \\ \sigma^2_{\text{ref.}} & \text{if } t^i_{\vec{p}} - t^{i-1}_{\vec{p}} \leq \overline{\rho}, \end{cases}$

Event Frame Fusion

Riccati computation

Event Frame Fusion

Filter update

Event Frame Fusion

Asynchronous Kalman Gain

Event Frame Fusion

19-Jun-21 25

F

Time T

Asynchronous Kalman Gain

Event Frame Fusion

