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Computational Imaging:
Hardware Software Co-design
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At Northwestern: Cl Across Scale
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Remote Fourier Ptychography Imaging
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Diffuse Everyday Objects —
Mystery Object #
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Synthetic Wavelength Holography Willomitzer et al.,

ArXiv preprint:
1912.11438 (2019)
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Bio-Inspired Computational Imaging?

X ) scene
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information

OEDES

Biological image sensing and visual processing are intricately linked

Slide credit: Emma Alexander
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Infensity vs. Event Cameras

= Same bandwidth for Video and motion contrast
* Video frames are dense, temporal resolution is low
= Event streams are sparse in space and time
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Event-based Computational Imaging
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Event-based Computational Imaging

3D Cameras ? A

Physical
Scale

Photography
10-3m - 10m

iver Cossairt, Northwestern University




Review - Current off-the-shelf 3D sensors
Triangulation based 3D sensors

Stereo Structured light
Target
Camera/Sensor
(w, (7, vr)
(.
. Triangulatibon baseline
Left cam;ra Right camera Structured Light Projector
[S.T. Barnard et al., 1982] [J. L. Posdamer et al., 1982]

Time-of-flight based 3D sensors

Pulsed LIDAR Time of flight camera Optical interferometry
Laser diode m(t) M.irror
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MC3D Principle

Matsuda et al.,
ICCP, 2016
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MC3D Principle
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MC3D Principle
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MC3D Principle
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MC3D Principle

—

Disparity 3D Model
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MC3D Principle
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MC3

Depth information
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Results: Ambient lllumination

» Second Generation MC3D works with 50,000lux
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Live Outdoor 3D Scanning
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Live Outdoor 3D Scanning
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= MC3D works with 80,000 lux at 4m stand-off distance
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Event-based Computational Imaging

High Speed Video
"t

o Physical
Scale

Photography
10-3m - 10m

Oliver Cossairt, Northwestern University




Previous Research: High Speed Imaging

Compressed Sensing Video
Measurement Model:
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Event-driven video frame synthesis

captured data pre-processing DMR Residual "denoising” final output
intensity image + events binning events to frames differentiable model- learning to remove synthesized video
based reconstruction DMR artifacts

- N Y

[ global skip connection

Rl ﬁﬂﬂL

[Jconv + ReLU
e ] conv + BN + RelU
L ) [ conv )
1. Differentiable model-based reconstruction (DMR) 2. Residual learning for further improvement:
3-in-1 solver: frame interpolation, extrapolation, and motion deblur Residual nets are easy to train

| intensity frame tensorfi— intensity data

A

intensity sensing model . . . .
y J Wang, Zihao W,, et al. "Event-driven video frame synthesis."

fi d ti
H forward propagation CVPR Workshop, 2019.

latent high-res tensor |

gradient-based
back propagation

event sensing model
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Results for event-driven video frame synthesis

Interpolation using APS-only Interpolation using APS + DVS

SepConv [CVPR17] Ground truth Ours (DMR + Refinement)
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Guided Event Filtering

Imaging device Image and events Filtered event frame
Applications

Wang, Zihao W,, et al. "Joint filtering of intensity images and neuromorphic events for high-resolution noise-robust imaging." Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

Wang, Zihao W,, et. al., “Guided Event Filtering: Synergy between Intensity Images and Neuromorphic Events for High Performance
Imaging”, submitted to IEEE Trans. of Imag. Proc.
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Motion Compensation

Joint contrast maximization

Warped event

Image edge
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Joint Filtering

Event frame Intensity

Filtered output
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GEF Resulits

RGB video Event video Filtered result (8x)
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GEF Resulits

RGB video Event video Filtered result (8x)
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GEF: Motion Deblurring

M

Blurry image w/o GEF w/ GEF

L. Pan, et al. Bringing a blurry frame alive at high frame-rate with an event camera.. CVPR 2019
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GEF: HDR Imaging

Ay T i Tl

LDR image + events w/o GEF w/ GEF

Oliver Cossairt, Northwestern University




GEF: Corner detection & tracking

w/ GEF (4x)
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Future Directions: Spiking and Hybrid NN Models
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Recognition,” accepted to IEEE ICIP 2021 —ANN-SNN 99.54 99.38 98.93 95.47 86.36 64.88
—SNN ANN-SNN

Increasing Noise — m—)

Oliver Cossairt, Northwestern University



Conclusions

Computational imaging (Cl) leverages joint
hardware software design

Many applications in 3D and high-speed
camera design

Bio-inspired CI offers can maximize task-

specific performance with low-power and
high bandwidth

Cl with SNNs could enable better end-to-
end HW+SW performance with lower power
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