# Hardware and Algorithm Co-design with Event Sensors





### **Oliver** Cossairt

Associate Professor ECE/CS Departments Northwestern University

# Aknowledgements

- Nathan Matsuda (NU, FRL)
- Zihao (Winston) Wang (NU, Apple)
- Srutarshi Banerjee (NU)
  - Henry Chopp (NU)
  - Peng Kang (NU)
  - Many others...









ONR Program Review November 5, 2015

## Computational Imaging: Hardware Software Co-design





### At Northwestern: CI Across Scale





### Remote Fourier Ptychography Imaging



Holloway et al., Science Advances, 2019



## Diffuse Everyday Objects – Mystery Object #1





## Diffuse Everyday Objects – Mystery Object #1









### **Bio-Inspired Computational Imaging?**



Biological image sensing and visual processing are intricately linked

Slide credit: Emma Alexander



# Intensity vs. Event Cameras

- Same bandwidth for Video and motion contrast
- Video frames are dense, temporal resolution is low
- Event streams are sparse in space and time





### Event-based Computational Imaging





### Event-based Computational Imaging







### Time-of-flight based 3D sensors



Matsuda et al., ICCP, 2016























## MC3D Advantage: Bandwidth



Requires only one measurement per pixel



# **Results: Ambient Illumination**



Second Generation MC3D works with 50,000lux



# Live Outdoor 3D Scanning





Oliver Cossairt, Northwestern University

# Live Outdoor 3D Scanning



MC3D works with 80,000 lux at 4m stand-off distance



### Event-based Computational Imaging





### Previous Research: High Speed Imaging

#### **Compressed Sensing Video** Measurement Model:



#### CS Video Camera:



Snapshot Video Reconstructions:









#### Snapshot 3D Reconstructions:







### Event-driven video frame synthesis



Differentiable model-based reconstruction (DMR)
3-in-1 solver: frame interpolation, extrapolation, and motion deblur

2. Residual learning for further improvement: Residual nets are easy to train



Wang, Zihao W., et al. "Event-driven video frame synthesis." *CVPR Workshop*, 2019.



### Results for event-driven video frame synthesis

#### Interpolation using APS-only

#### Interpolation using APS + DVS

#### SepConv [CVPR'17]



#### Ground truth



#### Ours (DMR + Refinement)





# Guided Event Filtering



Wang, Zihao W., et al. "Joint filtering of intensity images and neuromorphic events for high-resolution noise-robust imaging." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2020.

Wang, Zihao W., et. al., "Guided Event Filtering: Synergy between Intensity Images and Neuromorphic Events for High Performance Imaging", submitted to IEEE Trans. of Imag. Proc.



# **Motion Compensation**

Joint contrast maximization





# Joint Filtering



Event frame

#### Intensity





## GEF Results



RGB video

#### Event video

#### Filtered result (8x)



### GEF Results



RGB video

#### Event video

#### Filtered result (8x)



# **GEF: Motion Deblurring**



Blurry image

w/o GEF

w/ GEF

L. Pan, et al. Bringing a blurry frame alive at high frame-rate with an event camera.. CVPR 2019



# GEF: HDR Imaging



LDR image + events





w/o GEF

w/ GEF



### GEF: Corner detection & tracking



w/ GEF (4x)



### **Future Directions: Spiking and Hybrid NN Models**



Recognition," accepted to IEEE ICIP 2021.





# Conclusions

- Computational imaging (CI) leverages joint hardware software design
- Many applications in 3D and high-speed camera design
- Bio-inspired CI offers can maximize taskspecific performance with low-power and high bandwidth
- CI with SNNs could enable better end-toend HW+SW performance with lower power

