Event-based vision and processing for tiny drones

Guido de Croon

Full Professor

MAVLab, Faculty of Aerospace Engineering

TUDelft

Tiny, light-weight, agile drones

fuDelft

M. Karásek, F.T. Muijres, C. De Wagter, B.D.W. Remes, G.C.H.E. de Croon, "A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns", *Science*, Vol 361, Iss 6407, 2018

Size, Weight, and Power (SWaP)

- 33 cm wingspan, 29 g (flight 6 W)
- STM32F4 (0.2 W, 4 g)
 - -168 MHz processor
 - -192 kB of memory

TUDelft

Size, Weight, and Power (SWaP)

- 33 cm wingspan, 29 g (flight 6 W)
- STM32F4 (0.2 W, 4 g)
 - -168 MHz processor
 - -192 kB of memory

ÍUDelft

Map from [1]

SLAM: ~100s-1000s MBs memory [2]

[1] von Stumberg, L., et al. From monocular SLAM to autonomous drone exploration. In *2017 European Conference on Mobile Robots (ECMR 2017)* (pp. 1-8). IEEE.

[2] Bodin, B. et al. SLAMBench2: Multi-objective head-to-head benchmarking for visual SLAM. in 2018 IEEE International Conference on Robotics and Automation (ICRA) 1–8 (2018).

Size, Weight, and Power (SWaP)

- 33 cm wingspan, 29 g (flight 6 W)
- STM32F4 (0.2 W, 4 g)
 - -168 MHz processor
 - -192 kB of memory

How to make tiny drones autonomous?

Draw inspiration from nature!

Fly, avoid obstacles, navigate, find food and shelter, interact socially with other fruit flies, learn, ...

All for ~100,000 neurons!

Linking together simple behaviors

(Credit: © 2013 Floris van Breugel)

van Breugel, F., & Dickinson, M. H. (2014). Plume-tracking behavior of flying Drosophila emerges from a set of distinct sensory-motor reflexes. *Current Biology*, *24*(3), 274-286.

Linking together simple behaviors

[1] Tijmons, S., de Croon, G.C.H.E., Remes, B.D.W., De Wagter, C., & Mulder, M. (2017). Obstacle avoidance strategy using onboard stereo vision on a flapping wing may. *IEEE Transactions on Robotics*, *33*(4), 858-874.

[2] McGuire, K. N., De Wagter, C., Tuyls, K., Kappen, H. J., & de Croon, G. C. H. E. (2019). Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment. *Science Robotics*, 4(35), eaaw9710.

Linking together simple behaviors

[2]

State : Straight Average distance Time state 4 > Threshold? < high threshold? State 4 State 2 Average distance Straight < low threshold? Straight Obstacle detected? Average distance Time state 2 > Threshold? > high threshold State 3 & sufficient texture? Turn riaht

[1] Tijmons, S., de Croon, G.C.H.E., Remes, B.D.W., De Wagter, C., & Mulder, M. (2017). Obstacle avoidance strategy using onboard stereo vision on a flapping wing mav. *IEEE Transactions on Robotics*, *33*(4), 858-874.

[1]

[2] McGuire, K. N., De Wagter, C., Tuyls, K., Kappen, H. J., & de Croon, G. C. H. E. (2019). Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment. *Science Robotics*, 4(35), eaaw9710.

10

Neuromorphic sensing and computing

Event-based cameras

- Only perceive changes in brightness
- Sparse events
- Extremely fast and energy efficient

Spiking neural networks

- Temporal dynamics closer to those of real neurons
- Sparse parallel processing
- Fast and energy efficient

Spiking neural networks

- Temporal dynamics closer to those of real neurons
- Sparse parallel processing
- Fast and energy efficient

But: more challenging to design and train!

Goal: Fully neuromorphic, vision-based autonomous flight

Case study: optical flow landing

Case study: Optical flow landing

Honeybees land vertically by keeping optical flow divergence constant

Baird, E., Boeddeker, N., Ibbotson, M. R., & Srinivasan, M. V. (2013). A universal strategy for visually guided landing. *Proceedings of the National Academy of Sciences*, *110*(46), 18686-18691.

Case study: Optical flow landing

Honeybees land vertically by keeping optical flow divergence constant

D = -Vz / z = C

Difficult?

"Naïve" approach:

Thrust = gain x (D - D*)

Difficult?

"Naïve" approach:

Thrust = gain x (D - D*)

de Croon, G.C.H.E. (2016). Monocular distance estimation with optical flow maneuvers and efference copies: a stability-based strategy. Bioinspiration & biomimetics, 11(1), 016004.

Color coding

Traditional element (images, processing)

Neuromorphic:

- Offboard / not in the loop
- Onboard & in the loop, but on conventional hardware
- Onboard & in the loop, on neuromorphic hardware

Pijnacker Hordijk, B. J., Scheper, K. Y., & De Croon, G.C.H.E. (2018). Vertical landing for micro air vehicles using event-based optical flow. Journal of Field Robotics, 35(1), 69-90.

Divergence* = 1 landing

Unsupervised learning of optical flow with an SNN

Paredes-Vallés, F., Scheper, K. Y. W., & De Croon, G. C. H. E. (2019). Unsupervised learning of a hierarchical spiking neural network for optical flow estimation: From events to global motion perception. IEEE transactions on pattern analysis and machine intelligence.

Textural features

Textural features

Textural features

Results

Results

Output – global flow observables

Hagenaars, J. J., Paredes-Vallés, F., Bohté, S. M., & de Croon, G.C.H.E. (2020). Evolved Neuromorphic Control for High Speed Divergence-based Landings of MAVs. RA-L, IROS 2020

Neuromorphic control for optic-flow-based landings of MAVs using the Loihi processor. Julien Dupeyroux, Jesse J. Hagenaars, Federico Paredes-Valles and Guido C.H.E. de Croon – ICRA 2021.

Evolve the SNN in simulation and transfer to reality

Unpredictable elements (initial height, delay, jitter, etc.) randomized during evolution

Results

Conclusion

Neuromorphic sensing and processing form a huge promise for insect-inspired autonomous flight of tiny drones

Future:

- Fully neuromorphic pipeline
- Improve learning mechanisms for SNNs
- Tackle increasingly complex tasks
 Delft

Researchers involved in the neuromorphic work

Federico Paredes-Vallès, Kirk Scheper, Julien Dupeyroux, Jesse Hagenaars, Bas Pijnacker Hordijk (all TU Delft), Sander Bohté (UvA)

> More information mavlab.tudelft.nl

Questions?

More information mavlab.tudelft.nl

