
1

Event-based vision and processing 
for tiny drones

Guido de Croon

Full Professor

MAVLab, Faculty of Aerospace Engineering



2

Tiny, light-weight, agile drones

M. Karásek, F.T. Muijres, C. De Wagter, B.D.W. Remes, G.C.H.E. de Croon, 

“A tailless aerial robotic flapper reveals that flies use torque coupling in rapid 

banked turns”, Science, Vol 361, Iss 6407, 2018
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Size, Weight, and Power (SWaP)

• 33 cm wingspan, 29 g (flight 6 W)

• STM32F4 (0.2 W, 4 g)

– 168 MHz processor

– 192 kB of memory
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Size, Weight, and Power (SWaP)

• 33 cm wingspan, 29 g (flight 6 W)

• STM32F4 (0.2 W, 4 g)

– 168 MHz processor

– 192 kB of memory

SLAM: ~100s-1000s MBs memory [2]

[1] von Stumberg, L., et al. From monocular SLAM to 

autonomous drone exploration. In 2017 European 

Conference on Mobile Robots (ECMR 2017) (pp. 1-

8). IEEE.

[2] Bodin, B. et al. SLAMBench2: Multi-objective 

head-to-head benchmarking for visual SLAM. in 2018 

IEEE International Conference on Robotics and 

Automation (ICRA) 1–8 (2018).

Map from [1]
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Size, Weight, and Power (SWaP)

• 33 cm wingspan, 29 g (flight 6 W)

• STM32F4 (0.2 W, 4 g)

– 168 MHz processor

– 192 kB of memory

Processors: 
• 6-core 2 GHz 
• 256-core GPU

Memory:
• 8 GB

Mass:
• 85 g

Power:
• 7.5 W

NVidia Jetson TX2
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How to make tiny drones 
autonomous?
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Draw inspiration from nature!

Fly, avoid obstacles, navigate, find food and shelter, 
interact socially with other fruit flies, learn, …

All for ~100,000 neurons!
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Linking together simple behaviors 

(Credit: © 2013 Floris van Breugel)

van Breugel, F., & Dickinson, M. H. (2014). Plume-tracking 
behavior of flying Drosophila emerges from a set of distinct 

sensory-motor reflexes. Current Biology, 24(3), 274-286.
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Linking together simple behaviors 

[1] Tijmons, S., de Croon, G.C.H.E., Remes, B.D.W., De Wagter, C., & Mulder, M. (2017). Obstacle avoidance 
strategy using onboard stereo vision on a flapping wing mav. IEEE Transactions on Robotics, 33(4), 858-874.

[2] McGuire, K. N., De Wagter, C., Tuyls, K., Kappen, H. J., & de Croon, G. C. H. E. (2019). Minimal navigation 
solution for a swarm of tiny flying robots to explore an unknown environment. Science Robotics, 4(35), eaaw9710.

[1] [2]
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Linking together simple behaviors 
[1] [2]

[1] Tijmons, S., de Croon, G.C.H.E., Remes, B.D.W., De Wagter, C., & Mulder, M. (2017). Obstacle avoidance 
strategy using onboard stereo vision on a flapping wing mav. IEEE Transactions on Robotics, 33(4), 858-874.

[2] McGuire, K. N., De Wagter, C., Tuyls, K., Kappen, H. J., & de Croon, G. C. H. E. (2019). Minimal navigation 
solution for a swarm of tiny flying robots to explore an unknown environment. Science Robotics, 4(35), eaaw9710.
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Neuromorphic sensing and computing
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Event-based cameras

• Only perceive changes in 
brightness

• Sparse events

• Extremely fast and 
energy efficient
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Spiking neural networks

• Temporal dynamics closer 
to those of real neurons

• Sparse parallel processing

• Fast and energy efficient
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Spiking neural networks

• Temporal dynamics closer 
to those of real neurons

• Sparse parallel processing

• Fast and energy efficient

But: more challenging to design and train!



15

Goal: Fully neuromorphic, vision-based 
autonomous flight
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Case study: optical flow landing
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Case study: Optical flow landing

Honeybees land vertically by keeping optical flow 
divergence constant

Baird, E., Boeddeker, N., Ibbotson, M. R., & Srinivasan, M. V. 

(2013). A universal strategy for visually guided landing. Proceedings 

of the National Academy of Sciences, 110(46), 18686-18691.
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Case study: Optical flow landing

Honeybees land vertically by keeping optical flow 
divergence constant

D = -vz / z = C
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Constant divergence landing
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Constant divergence landing
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Constant divergence landing
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Difficult?

“Naïve” approach: Thrust =  gain x (D - D*)
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Difficult?

“Naïve” approach: Thrust =  gain x (D - D*)

de Croon, G.C.H.E. (2016). Monocular distance estimation with optical flow 
maneuvers and efference copies: a stability-based strategy. Bioinspiration & 

biomimetics, 11(1), 016004.
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Our approach
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Traditional pipeline

T = P x (D-D*)
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Traditional pipeline

T = P x (D-D*)
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Color coding

Traditional element (images, processing)

Neuromorphic: 

• Offboard / not in the loop

• Onboard & in the loop, but on conventional hardware

• Onboard & in the loop, on neuromorphic hardware
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Event-based vision

T = P x (D-D*)

Pijnacker Hordijk, B. J., Scheper, K. Y., & De Croon, G.C.H.E. (2018). Vertical landing for 
micro air vehicles using event‐based optical flow. Journal of Field Robotics, 35(1), 69-90.
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Divergence* = 1 landing
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Unsupervised learning of optical flow 
with an SNN

T = P x (D-D*)

Not 

considered

Paredes-Vallés, F., Scheper, K. Y. W., & De Croon, G. C. H. E. (2019). Unsupervised learning of a 
hierarchical spiking neural network for optical flow estimation: From events to global motion 

perception. IEEE transactions on pattern analysis and machine intelligence.
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Unsupervised learning with modified STDP
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Unsupervised learning with modified STDP

Textural features
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Unsupervised learning with modified STDP

Local optical flow

Textural features
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Unsupervised learning with modified STDP

Global flow field 

properties

Local optical flow

Textural features
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Unsupervised learning with modified STDP

Global flow field 

properties

Local optical flow

Textural features
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Results



37

Output – global flow observables
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CMOS camera + onboard, CPU-based SNN

Simulated on 

Parrot Bebop CPU

Hagenaars, J. J., Paredes-Vallés, F., Bohté, S. M., & de Croon, G.C.H.E. (2020). Evolved 
Neuromorphic Control for High Speed Divergence-based Landings of MAVs. RA-L, IROS 2020
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Using Intel’s neuromorphic Loihi chip

Neuromorphic  control  for  optic-flow-based  landings  of  MAVs using  the  Loihi  processor.
Julien Dupeyroux, Jesse J. Hagenaars, Federico Paredes-Valles and Guido C.H.E. de Croon – ICRA 2021.

Intel Loihi chip
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Our approach
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Our approach

Evolve the SNN in simulation and transfer to reality
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Our approach

Evolve the SNN in simulation and transfer to reality
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Dynamics, integer weight 

representation, etc. adapted 

to match the Loihi chip
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Our approach

Evolve the SNN in simulation and transfer to reality

Encoded 

similar to the 

OF-SNN

Decoded and then 

executed by 

low-level controller

Dynamics, integer weight 

representation, etc. adapted 

to match the Loihi chip

Unpredictable elements (initial height, delay, jitter, etc.) randomized during evolution
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Our approach
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Results
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Conclusion

Neuromorphic sensing and processing form a huge 
promise for insect-inspired autonomous flight of tiny 
drones

Future:
• Fully neuromorphic pipeline

• Improve learning mechanisms for SNNs

• Tackle increasingly complex tasks
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Researchers involved in the 
neuromorphic work

Federico Paredes-Vallès, Kirk Scheper, Julien 
Dupeyroux, Jesse Hagenaars, Bas Pijnacker
Hordijk (all TU Delft), Sander Bohté (UvA)

More information
mavlab.tudelft.nl
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Questions?

More information
mavlab.tudelft.nl


