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Our goal:
To leverage our knowledge of the inner workings of event cameras to learn, in a 
self-supervised fashion, to perform image reconstruction without the need for 
any ground-truth or synthetic data.



Related work

Kim et al. (JSSC’08, ECCV’16)
- EKF + Poisson int.

Cook et al. (IJCNN’11)
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Bardow et al. (CVPR’16)
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We propose to come back to the theoretical basics of event cameras with a machine learning approach that 
leverages the optical flow - image brightness relation to learn to perform image reconstruction from real unlabaled 
event data while remaining computationally efficient.
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Proposed framework
Self-supervised image reconstruction

Proposed training pipeline: 
- FlowNet learns to estimate event-based optical flow by 
compensating for the motion blur in the input events 
(Zhu et al., CVPR’19).

- ReconNet learns to perform image reconstruction by 
predicting the brightness frames that best satisfy the 
input events and the estimated optical flow.

Self-supervised learning of optical flow via contrast maximization:

Event stream

ANN

Optical flow

Event 
deblurring
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Measured brightness increment

Predicted brightness increment

The brightness change 
encoded in the events...

...is caused by the 
displacement of the 
spatial gradents of the 
brightness signal.

Temporal derivative 
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Brightness 
constancy 

Generative model

: image intensity



Proposed framework
Self-supervised image reconstruction

The brightness change 
encoded in the events...

...is caused by the displacement of 
the spatial gradents of the 
brightness signal.



Training details

Dataset: UZH-FPV Drone Racing Dataset (Delmerico, ICRA’19).

Architectures:
Input representation: voxel grid (Zhu, CVPR’19)
FlowNet:

- EV-FlowNet (Zhu et al., RSS’18)
- FireFlowNet (Ours)

ReconNet:
- E2VID (Rebecq et al., TPAMI’19)
- FireNet (Scheerlinck et al., WACV’20)

Loss function:



Results
Event-Camera Dataset (Mueggler, IJRR’17)

High Quality Frames (Stoffregen, ECCV’20)

Subcripts “F” and “E” indicate whether our networks 
were trained together with FireFlowNet or EV-Flownet.

Perceptual 
similarity

E2VID+ (Stoffregen, ECCV’20) FireNet+ (Stoffregen, ECCV’20)

SSL-E2VID (Ours) SSL-FireNet (Ours)

Close to SOTA performance!
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Conclusion
- We presented the first self-supervised learning-based approach to event-based image reconstruction.

- The framework can be extended in multiple ways (architectures, losses, optical flow algorithms, etc.).
- Architectures
- Optical flow algorithms
- Other regularizers

Input events Optical flow Reconstructed frames


