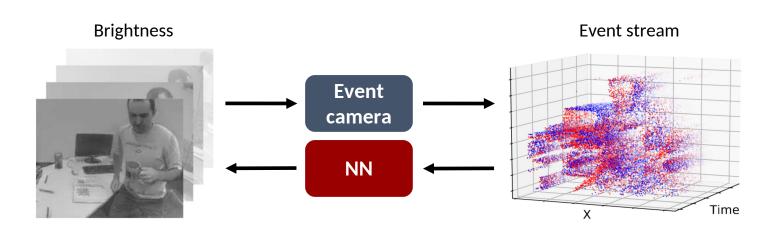
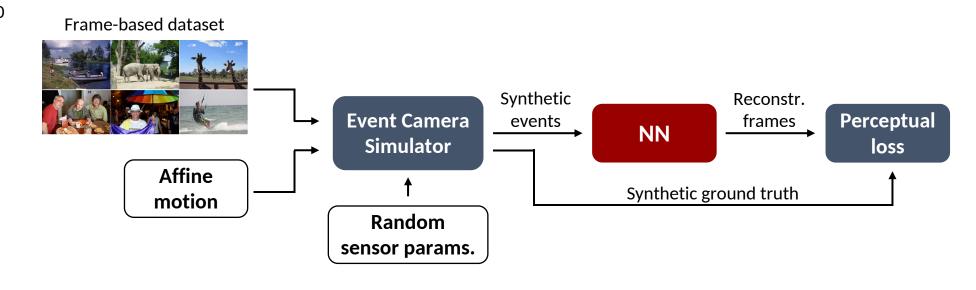

Back to Event Basics: Self-Supervised Learning of Image Reconstruction for Event Cameras via Photometric Constancy

Federico Paredes-Valles and Guido C. H. E. de Croon (Poster Session Three, ID: 8305)

Problem formulation

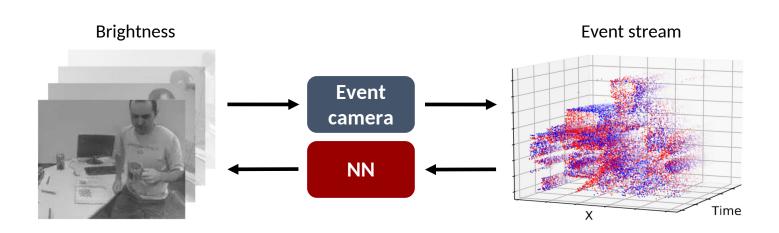

Event cameras and image reconstruction:

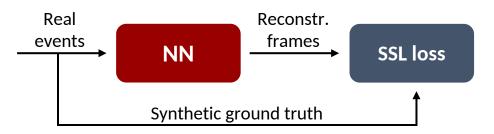
Problem formulation


Event cameras and image reconstruction:

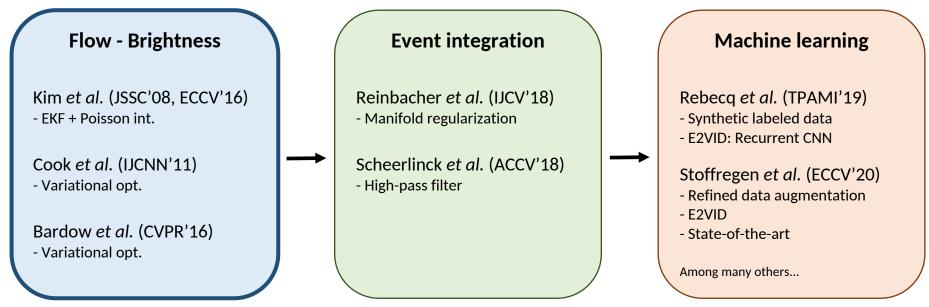
Minimal training pipeline:

- Rebecq et al., TPAMI'19

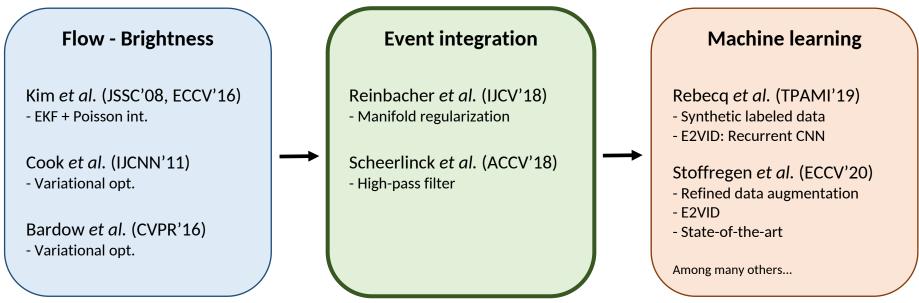

- Stoffregen et al., ECCV'20


Problem formulation

Event cameras and image reconstruction:

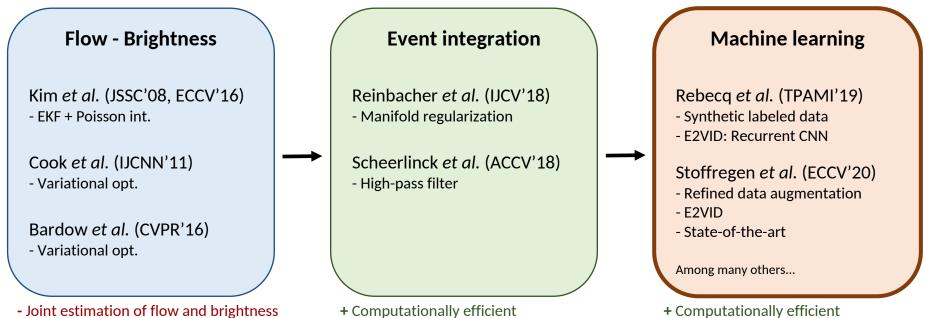

Our goal:

To leverage our knowledge of the inner workings of event cameras to learn, in a self-supervised fashion, to perform image reconstruction without the need for any ground-truth or synthetic data.


Related work

- Joint estimation of flow and brightness
- Computationally expensive
- Hand-crafted regularizers

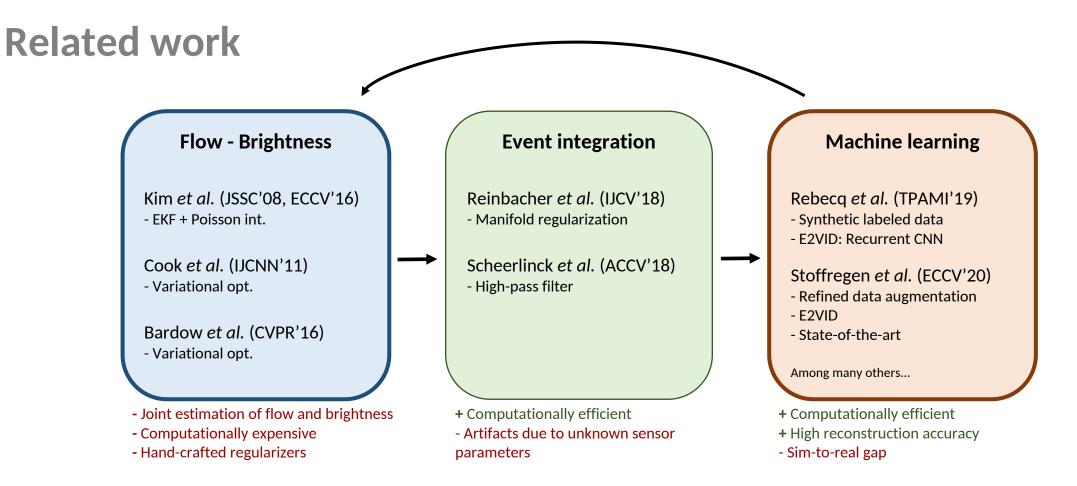
Related work


- Joint estimation of flow and brightnessComputationally expensive
- Hand-crafted regularizers

+ Computationally efficient - Artifacts due to unknown sensor parameters

Related work

TUDelft



- Computationally expensive
- Hand-crafted regularizers

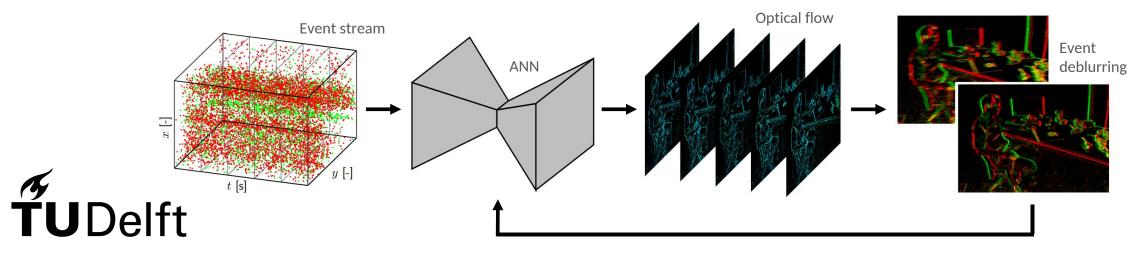
+ Computationally efficient - Artifacts due to unknown sensor parameters

+ High reconstruction accuracy

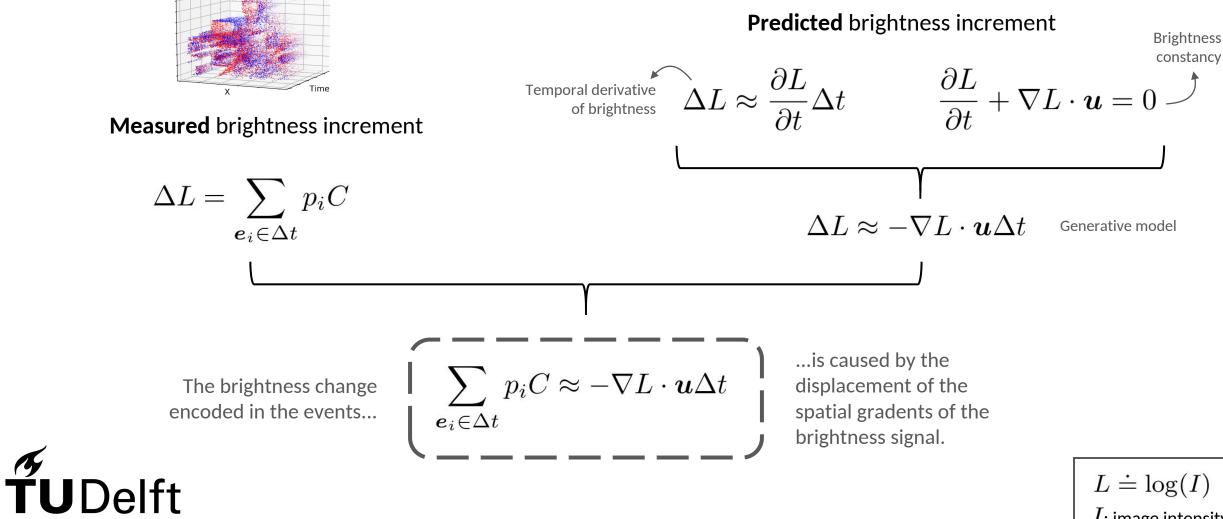
- Sim-to-real gap

We propose to come **back to the theoretical basics** of event cameras with a machine learning approach that leverages the optical flow - image brightness relation to learn to perform image reconstruction from real unlabaled event data while remaining computationally efficient.

Proposed framework


Self-supervised image reconstruction

Proposed training pipeline:


- FlowNet learns to estimate event-based optical flow by compensating for the motion blur in the input events (Zhu et al., CVPR'19).
- ReconNet learns to perform image reconstruction by predicting the brightness frames that best satisfy the input events and the estimated optical flow.

$\hat{m{u}}$ Contrast \boldsymbol{E} FlowNet Maximization Generative Events ReconNet Model Event accumulation ΔL $\sum p_i C$ $i \in \epsilon$ Error propagation

Self-supervised learning of optical flow via contrast maximization:

Proposed framework Self-supervised image reconstruction

I: image intensity

Proposed framework

Self-supervised image reconstruction

Training details

Loss function:

$$\mathcal{L}_{\mathsf{ReconNet}} = \sum_{k=0}^{S} \mathcal{L}_{\mathsf{model}} + \lambda_2 \sum_{k=S_0}^{S} \mathcal{L}_{\mathsf{TC}} + \lambda_3 \sum_{k=0}^{S} \mathcal{L}_{\mathsf{TV}}$$

Architectures:

Input representation: voxel grid (Zhu, CVPR'19) *FlowNet*:

- EV-FlowNet (Zhu et al., RSS'18)
- FireFlowNet (Ours)

ReconNet:

TUDelft

- E2VID (Rebecq et al., TPAMI'19)
- FireNet (Scheerlinck et al., WACV'20)

	EV-FlowNet	FireFlowNet
No. params. (k)	14130.28	57.03
Memory (Mb)	53.90	0.22
Downsampling	Yes	No

FlowNet: FireFlowNet (Ours)

$$E_k \rightarrow \mathcal{E}_1 \rightarrow \mathcal{E}_2 \rightarrow \mathcal{R}_1 \rightarrow \mathcal{E}_3 \rightarrow \mathcal{R}_2 \rightarrow \mathcal{P} \rightarrow \hat{u}_k$$

Conv Residual block

Dataset: UZH-FPV Drone Racing Dataset (Delmerico, ICRA'19).

TUDelft

E2VID+ (Stoffregen, ECCV'20) FireNet+ (Stoffregen, ECCV'20)

SSL-E2VID (Ours)

SSL-FireNet (Ours)

Close to SOTA performance!

Event-Camera Dataset (Mueggler, IJRR'17)					
	MSE	SSIM	LPIPS		
E2VID (Rebecq, TPAMI'19)	0.08	0.54	0.37	-	
FireNet (Scheerlinck, WACV'20)	0.06	<u>0.57</u>	0.29		
E2VID+ (Stoffregen, ECCV'20)	0.04	0.60	0.27		
FireNet+ (Stoffregen, ECCV'20)	0.06	0.51	0.32		
E2VID _F (Ours)	0.07	0.52	0.38		
E2VID _E (Ours)	0.06	0.55	0.37		
FireNet _F (Ours)	0.06	0.52	0.38		
FireNet _E (Ours)	0.06	0.51	0.41	_	

High Quality Frames (Stoffregen, ECCV'20)

	MSE	SSIM	LPIPS
E2VID (Rebecq, TPAMI'19)	0.14	0.46	0.45
FireNet (Scheerlinck, WACV'20)	0.07	0.48	0.42
E2VID+ (Stoffregen, ECCV'20)	0.03	0.57	0.26
FireNet+ (Stoffregen, ECCV'20)	0.05	0.47	<u>0.36</u>
E2VID _F (Ours)	0.07	0.44	0.47
E2VID _E (Ours)	0.06	0.48	0.47
FireNet _F (Ours)	0.06	0.46	0.47
FireNet _E (Ours)	0.06	0.46	0.51

Subcripts "F" and "E" indicate whether our networks were trained together with FireFlowNet or EV-Flownet.

Perceptual similarity

E2VID+ (Stoffregen, ECCV'20) FireNet+ (Stoffregen, ECCV'20)

SSL-E2VID (Ours)

Event-Camera Dataset (Mueggler, IJRR'17) LPIPS MSE SSIM E2VID (Rebecq, TPAMI'19) 0.08 0.54 0.37 FireNet (Scheerlinck, WACV'20) 0.06 0.57 0.29 0.27 E2VID+ (Stoffregen, ECCV'20) 0.04 0.60 0.51 0.32 FireNet+ (Stoffregen, ECCV'20) 0.06 0.52 0.38 $E2VID_F$ (Ours) 0.07 $E2VID_E$ (Ours) 0.06 0.55 0.37

0.06

0.06

0.52

0.51

0.38

0.41

Perceptual similarity

High Quality Frames (Stoffregen, ECCV'20)

FireNet_F (Ours)

FireNet_E (Ours)

	MSE	SSIM	LPIPS
E2VID (Rebecq, TPAMI'19)	0.14	0.46	0.45
FireNet (Scheerlinck, WACV'20)	0.07	<u>0.48</u>	0.42
E2VID+ (Stoffregen, ECCV'20)	0.03	0.57	0.26
FireNet+ (Stoffregen, ECCV'20)	0.05	0.47	0.36
E2VID _F (Ours)	0.07	0.44	0.47
E2VID _E (Ours)	0.06	0.48	0.47
FireNet _F (Ours)	0.06	0.46	0.47
FireNet _E (Ours)	0.06	0.46	0.51

Subcripts "F" and "E" indicate whether our networks were trained together with FireFlowNet or EV-Flownet.

Close to SOTA performance!

SSL-FireNet (Ours)

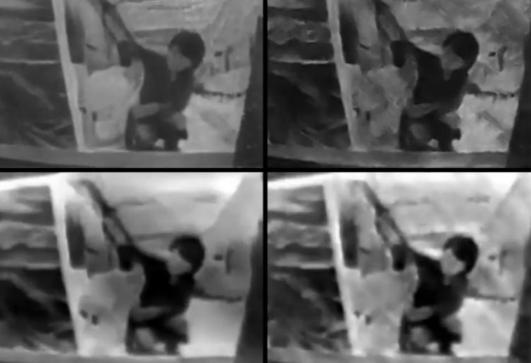
*f***U**Delft

E2VID+ (Stoffregen, ECCV'20)

SSL-E2VID (Ours)

FireNet+ (Stoffregen, ECCV'20)

Event-Camera Dataset (Mueggler, IJRR'17) LPIPS MSE SSIM E2VID (Rebecq, TPAMI'19) 0.08 0.54 0.37 FireNet (Scheerlinck, WACV'20) 0.06 0.57 0.29 0.27 E2VID+ (Stoffregen, ECCV'20) 0.04 0.60 FireNet+ (Stoffregen, ECCV'20) 0.51 0.32 0.06 $E2VID_F$ (Ours) 0.07 0.52 0.38 0.37 $E2VID_E$ (Ours) 0.06 0.55 FireNet_F (Ours) 0.06 0.52 0.38 FireNet_E (Ours) 0.06 0.51 0.41


High Quality Frames (Stoffregen, ECCV'20)

	MSE	SSIM	LPIPS
E2VID (Rebecq, TPAMI'19)	0.14	0.46	0.45
FireNet (Scheerlinck, WACV'20)	0.07	<u>0.48</u>	0.42
E2VID+ (Stoffregen, ECCV'20)	0.03	0.57	0.26
FireNet+ (Stoffregen, ECCV'20)	0.05	0.47	0.36
E2VID _F (Ours)	0.07	0.44	0.47
E2VID _E (Ours)	0.06	0.48	0.47
FireNet _F (Ours)	0.06	0.46	0.47
FireNet _E (Ours)	0.06	0.46	0.51

Subcripts "F" and "E" indicate whether our networks were trained together with FireFlowNet or EV-Flownet.

SSL-FireNet (Ours)

Close to SOTA performance!

Perceptual similarity

E2VID+ (Stoffregen, ECCV'20) FireNet+ (Stoffregen, ECCV'20)

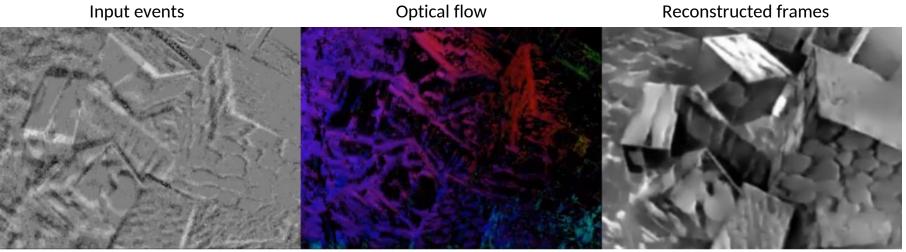
SSL-E2VID (Ours)

SSL-FireNet (Ours)

Close to SOTA performance!

Event-Camera Dataset (Mueggler, IJRR'17)					
	MSE	SSIM	LPIPS	\sim	
E2VID (Rebecq, TPAMI'19)	0.08	0.54	0.37	-	
FireNet (Scheerlinck, WACV'20)	0.06	<u>0.57</u>	<u>0.29</u>		
E2VID+ (Stoffregen, ECCV'20)	0.04	0.60	0.27		
FireNet+ (Stoffregen, ECCV'20)	0.06	0.51	0.32		
E2VID _F (Ours)	0.07	0.52	0.38		
E2VID _E (Ours)	0.06	0.55	0.37		
FireNet _F (Ours)	0.06	0.52	0.38		
FireNet _E (Ours)	0.06	0.51	0.41	_	

High Quality Frames (Stoffregen, ECCV'20)


	MSE	SSIM	LPIPS
E2VID (Rebecq, TPAMI'19)	0.14	0.46	0.45
FireNet (Scheerlinck, WACV'20)	0.07	<u>0.48</u>	0.42
E2VID+ (Stoffregen, ECCV'20)	0.03	0.57	0.26
FireNet+ (Stoffregen, ECCV'20)	0.05	0.47	0.36
E2VID _F (Ours)	0.07	0.44	0.47
E2VID _E (Ours)	0.06	0.48	0.47
FireNet _F (Ours)	0.06	0.46	0.47
FireNet _E (Ours)	0.06	0.46	0.51

Subcripts "F" and "E" indicate whether our networks were trained together with FireFlowNet or EV-Flownet.

Perceptual similarity

Conclusion

- We presented the first self-supervised learning-based approach to event-based image reconstruction.
- The framework can be extended in multiple ways (architectures, losses, optical flow algorithms, etc.).
 - Architectures
 - Optical flow algorithms
 - Other regularizers

