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Figure 1: Live demonstration setup. (Left) The setup consists of a DAVIS346B event camera connected to a standard
consumer laptop and undergoes some motion. (Right) The motion estimates are plotted in red and, for rotation-like motions,
the angular velocities provided by the camera IMU are also plotted in blue. This plot exemplifies an event camera undergoing
large rotational motions (up to∼ 1000 deg/s) around the (a) x-axis, (b) y-axis and (c) z-axis. Overall, the incremental motion
estimation method follows the IMU measurements. Optionally, the resultant global optical flow can also be shown, as well
as the corresponding generated events by accumulating them onto the image plane (bottom left corner).

1. Introduction

Several works have been proposed to use event cameras
to estimate motion from vision. Typically, this problem is
addressed by processing batches of events [3, 6, 7] since
each event does not contain much information by itself. The
motion estimates however are obtained with high latency,
and the methods can not run in real-time for most scenar-
ios. Some proposed methods can also run in real-time and
process one event at a time [1, 4]. However, these methods
are typically built for specific motion models [1] or require
extra estimations to work (e.g. gradients [4]).

The purpose of this demo is to demonstrate event-based
vision motion estimation for general motion models in real-
time by processing one event at a time, using an incremental
version of the method proposed in [6].

2. Brief Description
Here, we briefly describe the event-based incremental

motion estimation approach adapted from [6]. For ease of
exposition, we will consider minimising the Potential en-
ergy

P (y;θ) = −
Ne∑
i,j

KΣ(yi,yj ;θ) = −
Ne∑
i,j

wi,j , (1)

where θ are the motion parameters,KΣ is a Gaussian kernel
parameterised by the covariance matrix Σ, Ne is the num-
ber of events considered and yi represents the transformed
coordinates of the i-th event, according to yi = M(ei;θ).
In this work, an event e = (x, t, p) is characterised by its
image coordinates x = (x, y)T, the time-stamp it occurred
t and its polarity p ∈ {−1,+1}, i.e. brightness change.



The Potential energy (1) can be (locally) minimised
when its derivative w.r.t. the model parameters θ is zero:

∂P (y;θ)

∂θ
= −

Ne∑
i,j

wi,j

∂∆yT
i,j

∂θ
Σ−1∆yi,j = 0, (2)

where ∆yi,j = yi − yj . By assuming that yi can be ex-
pressed as a linear dependency on the motion parameters θ,
Eq. (2) can be manipulated such that the motion parame-
ters θ can be iteratively solved by linear least-squares, i.e.
θ∗ = Ψ−1ψ, where Ψ and ψ are a matrix and vector, re-
spectively, that capture the underlying algebraic manipula-
tions. The motion parameters θ can thus be incrementally
estimated by maintaining and updating the components ψ
and Ψ separately, and applying some strategy to give more
importance to recent events (e.g. decay factor).

3. Demo Setup
The setup consists of a laptop and a DAVIS346B event

camera (similar to a DVS240 [2]) that undergoes some mo-
tion (Fig. 1 left). The motion parameters are then estimated
by the incremental method briefly described in Section 2
and plotted using the PlotJuggler library1 (Fig. 1 right). We
also plot the ground-truth for rotation-like motion param-
eters, corresponding to the angular velocities provided by
the camera IMU. Fig. 1 also depicts an example whereby
the camera sequentially undergoes a large rotational motion
around the (a) x-axis, (b) y-axis and (c) z-axis. Optionally,
the generated events can also be shown by accumulating
them onto the image plane, as well as the optical flow ob-
tained from the estimated motion parameters.

Several motion models will be considered, including
translational motion (2-DOF: up-down and left-right), rota-
tional motion (3-DOF: rotation around the 3D axis), isom-
etry transformation (3-DOF: translational motion plus ro-
tation around the z-axis) and similarity transformation (4-
DOF: isometry transformation plus isotropic scaling).

4. Practical Implementation
The demo is implemented in C++, and we use ROS2 to

communicate between the camera, the laptop and PlotJug-
gler. We maintain a fixed number of the most recent events
(∼1500 events for the demo), similar to a FIFO queue pol-
icy. The components Ψ and ψ are incrementally computed
by considering a 9× 9 spatial neighbourhood centred at the
incoming event. These components are also decayed ac-
cording to the factor exp (−(ti − ti−1)ndecay), where ti is
the timestamp of the current event, ti−1 is the timestamp of
the previous event and ndecay is incremented by one for each
new event and is decayed according to the same factor.

1https://github.com/facontidavide/PlotJuggler
2Robotic Operating System: https://www.ros.org/

Table 1: Quantitative comparison between real-time (RT)
and not real-time (NRT) processing, in terms of Root Mean
Square (RMS) error, on real sequences [5].

boxes rotation poster rotation

Approach RMS (deg/s) RMS % RMS (deg/s) RMS %

NRT 12.72 1.35 17.27 1.84

RT 43.81 5.97 44.69 4.77

The incremental motion estimation method has an al-
most constant processing time per event, which depends on
the number of motion parameters. For example, for the rota-
tional motion estimation, it takes approximately 3µs to pro-
cess one event. However, in practice, more than one event
can be triggered within 3µs. To achieve real-time process-
ing, we do not process certain events, modifying the event’s
sequential index pattern. To sequentially process one event
at a time, an index variable is incremented by one. Instead,
we increment the index variable by exp(a∆t), where a = 5
was set empirically, and ∆t is the time difference between
the current time and the time the current received event-
based message was generated. Table 1 reports the respective
performance on two real sequences [5].
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