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Abstract

This paper presents a novel 3D human pose estimation
approach using a single stream of asynchronous events as
input. Most of the state-of-the-art approaches solve this task
with RGB cameras, which suffer when the subjects are mov-
ing fast. On the other hand, event-based 3D pose estimation
benefits from the advantages of event-cameras, especially
their efficiency and robustness to appearance changes. Yet,
finding human poses in asynchronous events is in general
more challenging than standard RGB pose estimation, since
little or no events are triggered in static scenes. Here we
propose the first learning-based method for 3D human pose
from a single stream of events. Our method consists of two
steps. First, we process the event-camera stream to predict
three orthogonal heatmaps per joint; each heatmap is the
projection of of the joint onto one orthogonal plane. Next,
we fuse the sets of heatmaps to estimate 3D localisation of
the body joints. As a further contribution, we make avail-
able a new, challenging dataset for event-based human pose
estimation by simulating events from the RGB Human3.6m
dataset. Experiments demonstrate that our method achieves
solid accuracy, narrowing the performance gap between
standard RGB and event-based vision.

The code is released at https://iit-pavis.
github.io/lifting_events_to_3d_hpe.

1. Introduction

Natural selection has empowered us with an efficient
perception system, enabling our brain to process visual
information and respond to threats promptly. Biological
evidence suggests that humans and other animals process
visual cues differently from traditional cameras [33, 60].
Instead of handling frames at fixed time intervals, mam-
mals collect visual cues asynchronously and elaborate in-

Figure 1: Our method computes the 3D pose of a subject
from event-camera streams. We first aggregate events into
meaningful representations that are then used to estimate
the final 3D pose of the subject.

formation on demand. This observation pushed the re-
search community and engineers to develop new sensors,
event-cameras, with a neuromorphic inspiration that pro-
vide crucial advantages in time-critical tasks and applica-
tions [30, 4].

Indeed, one of the most important activities we are daily
involved in is interacting with other human beings. For this
reason, we developed the ability to forecast human motion
and adapt our behavior accordingly [49, 24]. However, in
order to encode asynchronous quick reactions to human ac-
tivities, a basic but fundamental task to solve is the estima-
tion of human pose from event-based streams. Human pose
estimation is already widely adopted in action recognition
[28, 29], human tracking [27], sport assistance [55], and
virtual reality [54]. Most of the adopted solutions involve
using multiple cameras and require the subjects to wear
special markers suites [54]. Despite their efficiency and
broad adoption, these techniques rely on delicate synchro-
nization and are difficult to deploy in real environments.
For these reasons, monocular human pose estimation rep-
resents a fascinating research challenge with growing inter-
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ests in the industry [10, 50, 47]. There are two different
families of solutions to solve 3D human pose estimation:
skeleton-based and model-based solutions. The former re-
gresses skeletal 3D joints from a planar image [37, 42, 43],
while the latter fits a tri-dimensional parametric model of
the human body to the subjects in the scene [15, 3]. Re-
cently, Xu et al. adapted a model-based approach to event-
cameras [56]. Although they underline an interesting so-
lution, their approach requires RGB images to guide the
tracking and cannot be applied for real-time applications,
as it relies on a heavy optimization phase. We propose in-
stead an event-only pipeline to predict skeletal poses from a
single stream of events (Figure 1). Our pipeline consists of
two steps. First, a Convolutional Neural Network predicts
the projection of each joint of the skeleton onto three or-
thogonal planes. Instead of predicting the positions directly,
we constrained our approach onto estimating intermediate
heatmaps of probabilities for each joint. Second, we trian-
gulate the sets of 2D positions of each joint to predict the
3D joint pose. Instead of adopting raw events like similar
works [53, 56], we aggregate events into tensor-like repre-
sentations. Although event-representation has been widely
investigated and validated [51, 26, ?, 13], no previous work
has explored these approaches for monocular human pose
estimation. Moreover, differently from standard computer
vision, where transfer learning across different tasks has
been widely investigated [59], it is still unclear whether pre-
training on related tasks can improve event-based human
pose estimation. To fill these gaps, we compare different
pre-training tasks and different event-representations.

Experiments on natural and synthetic events validate
our approach. For validating performance on real event-
camera recordings, we adopt the recent DHP19 dataset [5].
DHP19 provides recordings of 33 activities from four dif-
ferent points of view. Despite the excellent contribution to
event-based vision, DHP19 provides few self-occlusions or
hard situations, as most of the activities are conducted on
the spot. To fill these gaps, we propose a new, challenging
event-based dataset for Human Pose Estimation by simu-
lating events from the standard Human3.6M dataset [20].
The event-camera community proposed numerous simula-
tion tools to tackle the absence of data [45], and these so-
lutions have been successfully adopted in recent work [46].
Human3.6m provides challenging scenarios, such as people
walking and moving extensively in the scene, that are in-
trinsically harder. In fact, we test our proposal extensively
on both DHP19 and Event-Human3.6 and provide different
ablations and experiments to support our claims. To sum-
marize, our proposal consists of three main contributions:

• A pipeline to predict Human Poses from a single
stream of events;

• A new, synthetic dataset for bench-marking event-
based Human Pose Estimation;

• Extensive experiments to validate transfer learning and
pre-training approaches for event-based human pose
estimation.

2. Related work
In this Section, we discuss skeleton-based approaches

for solving monocular Human Pose Estimation and un-
derline their critical points. To solve the limitations, pre-
vious works have focused on high-speed cameras; these
approaches suffer, however, from high computational and
storage limitations. Event-cameras can be a solution to
these problem. Indeed, recent works have adopted event-
by-event approaches to track objects and subjects in real-
time. On the other hand, our approach aggregates events
into tensor-like representation, which can be fed to standard
Deep Learning models. Moreover, we recognize a gap of
challenging datasets for event-based human pose estimation
and discuss events simulation and its benefits.

Monocular Human Pose Estimation. Industry and
academia are looking at human pose estimation with in-
creasing interest [10, 50, 47]. Commercial solutions usually
require special markers suite to track subjects from mul-
tiple point of views [54]. Despite their satisfactory per-
formances, these approaches are extremely costly and re-
quire careful setup choices to perform well at high speeds
[38]. For these reasons, monocular approaches have been
widely researched [57]. Along with background, light con-
ditions, texture, and image imperfection, monocular solu-
tions must also handle the intrinsic ambiguity of monocu-
lar vision and therefore pose unanswered challenges to the
research community. Model-based solutions are an estab-
lished line of work on this problem. These approaches es-
timate the full 3D body and shape of the subjects by fitting
a model of human body [31]. Although recent model-based
works achieve impressive performances [15, 3, 17], here we
will focus on skeleton-based solutions. Skeleton-based ap-
proaches aim to regress 3D joints of the skeleton directly
from images. As machine learning models deal with prob-
ability better than with scalar values, recent solutions pre-
dict dense probability maps (denominated heatmaps) of the
location of the skeletal joints onto the image plane. In par-
ticular, Newell et al. made a break-trough in the field by
proposing Stacked-hourglass model [41]. The authors stack
multiple Convolutional Neural Networks to extract expres-
sive heatmaps and apply a differentiable sort-argmax opera-
tor to retrieve the 2D pixel location of each joint. Although
we can adapt stacked-hourglass models to predict 3D (volu-
metric) heatmaps [43], this path is widely open for improve-
ments, especially since Volumetric Heatmaps are computa-
tional and memory demanding [32]. Indeed, Mehta et al.
factorize volumentric heatmaps into three 2D heatmaps to
lower computational costs [37]. The authors train a deep
learning model (VNect) to predict x, y, and z axes as dense



Figure 2: (a) A moving subject is recorded with an event-camera. (b) The recording is an asynchronous train of events; each
event is characterized by an image plane coordinate (x, y), a timestamp (t), and a positive or negative polarity (respectively,
blue and black in the figure). (c) batches of events are accumulated to build frames. Our model processes frames of events (d)
in multiple stages. The model output are three set of independent planes; each subject’s joint (i.e., head, left and right wrists,
and so on) is onto three independent planes(e). Next, it triangulates the planar predictions (f) and estimates the position of
each joint. The output (g) is the subject’s skeleton in tridimensional coordinate.

2D heatmaps and combine the predictions through triangu-
lation. The computational and resources savings of VNect
come with a price in terms of accuracy, as this method
reaches higher Mean Per-Joint Precision Error (MPJPE) on
common benchmarks. Nibali et al. develop this approach
further and propose a model (Margipose) to predict xy, zy,
and xz heatmaps and regress the final 3D pose [42]. Others
advancements in 3D human pose estimation include GANs
[7] and temporal convolutions [9].

Event-based approaches. Real-time applications re-
quire a careful design to meet strong computational, speed,
and energy requirements. This premise is especially true
when fast-moving human subjects are involved, such as in
sport assistance and virtual reality. Monocular solutions in-
volving RGB-D sensors [58] and high-speed cameras [25]
have been explored, although they cannot meet the com-
putational requirements of real-time applications. On the
other hand, event-cameras achieve high recording speed
without saturating bandwidth and resources. For these rea-
sons, human pose estimation performed with event-cameras
is both interesting and challenging for the community. Ap-
proaches that extrapolate information from single events
would be ideal, as these methods allow to exploit the inter-
esting advantages of event-cameras. Initial proposals lever-
aged event-cameras recording speed to match events with
known objects in the scene to estimate their pose [53, 22].
Rebecq et al. exploit a similar caveat [44] to predict semi-
dense 3D structure of a scene. More recently, Xu et al. [56]
employ events to (1) track features across frames and (2)
enhance the intensity outputs of a DAVIS camera. Next,

they predict human-poses with VNect [37] and Openpose
[6] models and optimize a multi-step optimization scheme
to refine the prediction. Despite its efficiency, their ap-
proach relies on a heavy pre-processing phase to extract
3D mesh of the subjects and involves multiple components,
each with its own hyper-parameters. Instead of process-
ing events in small batches, numerous works accumulate
events into tensors representations, conducing events in the
realm of synchronous deep learning models [12]. To pre-
dict human poses through event-cameras, previous works
aggregate events to predict 2D poses from multiple point of
views and finally triangulate subjects’ 3D poses [5, 2]. On
the other hand, our approach is the first attempt to estimate
3D human pose based on a single DVS camera. We prove
that human pose estimation from event-only DVS camera is
feasible. For an in-depth discussion of event-cameras and
their applications, we refer to the excellent event-cameras
summary [12].

Datasets for event-based Human Pose Estimation.
Few datasets have been recorded using event-cameras,
especially if compared with the huge amount of RGB
datasets. For human pose estimation, Calabrese et al. re-
leased DHP19, a dataset with recordings of 17 subjects
and 33 movements. On the other hand, simulating events
from RGB videos is a promising path of research, espe-
cially since multiple works proved the soundness of train-
ing on simulated events. Mueggleret al. [39] generate syn-
thetic events from RGB images and compare real and syn-
thetic events for ego-pose estimation in various scenarios.
More recently, simulated events have been employed for



image reconstruction [46], depth estimation [14], and mo-
tion segmentation [52], especially in high-speed scenarios
where RGB ground-truth are hard to collect. In this work,
we propose a pipeline to generate synthetic events from the
standard Human3.6m dataset [19, 20] and compare our ap-
proach with standard RGB methods to establish a strong
benchmark for further research.

3. Method
Our goal in this paper is to fill the gap between RGB-

based and event-based monocular human pose estimation.
In particular, we propose an end-to-end pipeline to predict
the skeleton of a subject from the stream of a single event-
camera. Figure 2 provides an overview of our methodol-
ogy. An event-camera collects an asynchronous stream of
events of a subject moving in the scene. Instead of track-
ing events as previous works [56], we aggregate them into
tensor-like frames. Next, we predict three heatmaps planes
of the cuboid surrounding the subject and finally build his
final 3D pose through triangulation.

Events. Event-cameras have peculiar pixel sensors that
capture information asynchronously. In particular, event-
cameras have no central clock; each pixel senses the light
variations of the scene independently according to

∆L(xk, tk) > pkC, where
∆L(xk, tk)

.
= L(xk, tk)− L(xk, tk −∆tk),

(1)

where at each pixel xk we compute the difference in light
intensity ∆L(xk, tk) between the current and previous time
instance every ∆tk seconds. If this difference exceeds a
fixed threshold C, the pixel emits an event. An event-
camera stream is a sequence of events, each characterized
by the image coordinate pair (x, y), a polarity (related to a
positive or a negative change of intensity), and a timestamp.

Events aggregation. Instead of relying on raw asyn-
chronous events, recent literature has shifted toward aggre-
gating events together to build synchronous events repre-
sentation. Common approaches range from simply inte-
grating batch of events (constant-count) to representations
involving stochastic modelling of events [51] and temporal
sparsity [?]. As temporal information is critical in 3D hu-
man pose estimation [8], our first question is to understand
if 3D Human Pose Estimation benefits from specific spatio-
temporal representations. To provide an answer, we com-
pare constant-count representation with spatio-temporal
voxel grids [61]. While constant-count simply aggregates
a constant number of events into an image, spatio-temporal
voxel-grid preserves the timestamp contribution of events
by building B temporal bins and have been already adopted
in image reconstruction [46, 48] and depth estimation [14].
Given a set of N events {(xk, tk, pk)}k=0...N , we com-
pute t∗k as the normalized timestamp of event k into range

(a) (b)

Figure 3: (a) We define the canonical 3D skeleton pose into
a normalized cube [35, 1] and reproject the cube into the
camera image plane using camera calibration parameters.
(b) For each joint, our method extracts the three orthogonal
faces of the cube to generate three marginal heatmaps.

[0, B − 1]. Each event (xk, tk, pk) contribute to each bin B
of voxel V proportionally to its normalized timestamp t∗k,
as in Equation 2. We set N = 7500 for both representations
and B = 4 for spatio-temporal voxel-grid.

V(x, t) =

N∑
k=0

pk max(0, 1− |t− t∗k|),

where t∗k
.
=

B − 1

tN − t0
.

(2)

Skeleton normalization and projection. Instead of re-
gressing 3D joints directly, our method relies, as a proxy,
on their 2D projections onto specific planes. We gener-
ate ground-truth as follows. First, we project the coordi-
nates pxyz of a joint on a plane parallel to the image plane
and placed at depth zref (we adopt the z value of the head
joint as zref). After that, we map the space to a normal-
ized cube pxyz

NDC (Normalized Device Coordinate - NDC
[35, 1]): the three coordinates assume values in the range
[-1, 1], as in Figure 3a. Last, we project pxyzNDC onto the
three orthogonal faces of the cube and blur the projection
on each face with a Gaussian Filter to generate ground-truth
marginal heatmaps Hxy, Hzy and Hxz (Figure 3b).

Predicting marginal heatmaps. We design our ap-
proach upon marginal heatmaps [36, 42] and first predict
three 2D heatmaps from our monocular input. Figure 4
summarizes our model. We first process the event-frame in-
put with a backbone to extract intermediate representations.
In particular, we adopt a ResNet-34 [16] which is cut af-
ter the second residual block. The feature extractor initial-
ization is a critical design choice of our approach and we
experimentally ablate possible alternatives in Section 4.3,
where we compare different initialization and pre-training
strategies and provide evidence of the benefits of RGB-to-
events transfer learning.

The main model consists in three branches, one for each
marginal projection (xy, zy, and xz). Each branch is fur-
ther made of three stages (Figure 4(a)), each consisting in



a hourglass-like CNN, as detailed in Figure 4(b). For each
stage we compute an intermediate loss. The result of each
stage is also aggregated (summation) with the previous out-
put to feed the next stage, in a residual-like fashion. Accord-
ing to [41], intermediate losses help alleviating the problem
of vanishing gradients.

Aggregating marginal heatmaps. Our model is trained
jointly to predict the intermediate heatmaps as well as the
normalized skeletal coordinates. We apply the soft-argmax
operator [40] to extract the normalized coordinates of each
joints onto the xy, xz, and yz planes. We choose the pre-
dictions from the xy-plane for the xy coordinate of the final
prediction p̂xyz , as they match naturally with the input im-
age. For z, we average the zy and xz predictions. Eq. 3
summarizes these steps as:

Ĥi
xy, H

i
xz, Ĥ

i
yz = Model(x)[

xi
xy, y

i
xy

]
= soft-argmax(Ĥi

xy)[
xi
xz, z

i
xz

]
= soft-argmax(Ĥi

xz)[
yizy, z

i
zy

]
= soft-argmax(Ĥi

zy)

p̂ixyz =
[
xi
xy, y

i
xy,

zi
xz+zi

zy

2

]
.

(3)

(a) Overview of our model

(b) Overview of one stage.

Figure 4: (a) We process event-frames with a backbone that
outputs features of depth d. Next, we adopt three sequen-
tial stages to output 3xJ intermediate heatmaps. We apply
an intermediate loss to each stage [40] and accumulate the
losses to solve the vanish gradient problem. (b) Each stage
process its input with three deep Convolutional Neural Net-
work through an auto-encoder architecture.

Losses. As the full pipeline is differentiable, we can
back-propagate the geometrical error between joints pre-
dictions and ground-truths and train our model end-to-end.
Moreover, we can interpret marginal heatmaps as proba-
bility distributions of joints locations. In this framework,
we apply the Jensen–Shannon divergence (Equation 4) be-
tween predicted heatmaps Ĥi for stage i and ground-truth
heatmaps H . JSD is based on the Kullbeck-Leibler diver-
gence (KL), it is symmetric and has only finite values given
by:

JSD(Ĥ,H) =
1

2
KL(H‖Ĥ) +

1

2
KL(Ĥ‖H). (4)

The Jensen-Shannon divergence and the geometrical loss
for each stage i are aggregated into the final loss L as:

L =
∑
i

Lgeometrical(p̂
i
xyz, pxyz) + JSD(Hxy, Ĥ

i
xy)+

JSD(Hxz, Ĥ
i
xz) + JSD(Hzy, Ĥ

i
zy),

(5)

where Lgeometrical(p̂
i
xyz, pxyz) = ‖p̂ixyz − pxyz‖2.

4. Experiments
We test our approach on our novel Event-Human3.6m

dataset and provide extensive comparison to support our
claims. Moreover, we experiment on real events from the
event-based DHP19 dataset. For both the dataset, we ad-
dress the scale-depth ambiguity using a ground-truth depth
point and calculate the Mean Per-Joint Precision Error
(MPJPE) between the de-normalized predictions and the
ground-truths [42, 32].

4.1. Datasets

DHP19 dataset. DHP19 [5] contains 33 recordings of
17 subjects of different sex, age, and size. Each subject
is recorded with four DVS cameras from different angles.
Nevertheless, the range of movements in the recordings is
narrow. Most of the activities, such as legs kicking and arms
abductions, are conducted on the spot, with the exception of
slow jogging and walking. Moreover, few recordings spot
real life activities. These gaps in the data limit its applica-
tions in real scenarios.

Event-Human3.6m dataset. In the previous section we
highlight some limitations of the DHP19 dataset [5], espe-
cially related to the narrowness of movements and activities
that it provide. To solve these gaps, we contribute with a
new simulated datasets based on the Human3.6m dataset
[19, 20]. Human3.6 recordings include 11 subjects and dif-
ferent activities from real scenarios, such as walking with
a dog, talking at the phone, and giving directions. Con-
sequently, extensive research has adopted the standard Hu-
man3.6m dataset to evaluate monocular Human Pose Esti-
mation methods [42, 37, 43]. We believe event-based re-



search will benefit from our Event-Human3.6m, as it ex-
tends DHP19 with more challenging scenarios and provides
a new benchmark for monocular human pose estimation al-
gorithms. We adopt the ESIM-Py simulator [45] to convert
the RGB recordings of Human3.6m into events and syn-
chronize raw joints ground-truth with events frames through
interpolation (Figure 5). As a result, Event-Human3.6m and
DHP19 have comparable ground-truths and event frames.
In the following sections we reports extensive experiments
on both DHP19 and Event-Human3.6m to test the benefits
of our proposal.

(a) (b) (c)

Figure 5: We simulate raw events from Human3.6m record-
ings (a) with the open-source simulator ESIM-Py [45]. We
set the simulators parameters cp = cn = 0.2, log-eps =
1e−3, and refractory-period = 1e−4, as this setting pro-
duces synthetic events similar to DHP19 event-cameras
recordings. Next, we accumulate events into event-frames
(b) and interpolate ground-truths to match timestamps (c)

Training details. We explore different hyper-parameters
settings empirically. In the following experiments, we train
our method on 4 Tesla V100 16Gb GPUs and adopt a batch
size (per GPU) of 32. For updating the gradients, we opt for
Adam optimizer [23] with learning rate of 0.0003. When
not specified, we interrupt the train at local convergence
through an early-stopping strategy. We evaluate our ap-
proach with 1 stage (7M of parameters, 91 MB of storage)
and 3 stages (21M parameters, 300MB of storage).

4.2. Results

Here we discuss the performance of our approach and
validate it on the two datasets.

Evaluation on DHP19. We test 1-stage and 3-stage
models with spatio-temporal voxel-grid and constant-count
representations. Table 1 reports the Mean Per Joint Preci-
sion Error (MPJPE, in mm) and summarizes the results. As
reference, we compare to the stereo approach of Calabrese
et al. [5]. As a first observation, our methodology per-
forms only slightly worse than the stereo approach (13mm
difference). In this setting, constant-count representation
performs better than voxel-grid. In the ablations, we elab-
orate on the differences between the two representations
when different backbones are adopted as feature extractors.

Moreover, we provide results for our single stage and 3-
stages model and compare them. Table 1 shows that multi-
ple stacked stages and intermediate losses provide sensible
performance benefits, at the cost of an increase in computa-
tional costs and model size.

Table 1: Results refer to DHP19 dataset [5]. We compare
our approach with 1 and 3 stack of stages across constant-
count and voxel-grid representation.

Method input MPJPE(mm)
Calabrese et al. [5] stereo 79.63
Constant-count – stage 3 monocular 92.09
Voxel-grid – stage 3 monocular 95.51
Constant-count – stage 1 monocular 96.69
Voxel-grid – stage 1 monocular 105.24

Evaluation on Event-Human3.6m. For each subject,
we keep 13 out the 32 provided joints to build skeletons that
are compatible with DHP19 groun-truths and evaluate our
approach on a cross-subject protocol. We train our models
on subjects 1, 3, 5, 7, 8 and test subjects 9 and 11. Similar
works [42, 32, 43] evaluate monocular approaches on ev-
ery 64th frame of the recordings. We adapt this evaluation
protocol to our asynchronous Event-Human3.6m by tak-
ing event-frames corresponding to the same testing frames.
Table 2 reports the results of our approach with constant-
count and voxel-grid representations. Moreover, we com-
pare our methodology to state-of-the-art RGB approaches
[21, 42, 43, 32]. Despite the gap with standard computer-
vision techniques, our approach performs fairly against ex-
isting RGB approaches.

Table 2: Comparison between RGB approaches on Hu-
man3.6m and our approach on its synthetic counterpart. We
adopt a standard cross-subject protocol to validate on the
same testing strategy as RGB approaches.

Method input MPJPE(mm)
Metha et al. [37] (ResNet-50) RGB 80.50
Kanazawa et al. [21] RGB 88.00
Nibali et al. [42] RGB 57.00
Pavlakos et al. [43] RGB 71.90
Luvizon et al. [32] RGB 53.20
Cheng et al. [9] RGB 40.10
Spatio-temporal voxel-grid (Ours) Events 119.18
Constant-count (Ours) Events 116.40

4.3. Ablation study

In this Section, we deepen different aspects of our ap-
proach in more detail. In particular, we are interested to ex-
plore what movements cause our approach to fail and how



backbone initialization impact performance. In the follow-
ing, we discuss these questions in more details.

Transfer learning and pre-training tasks. Event repre-
sentations and RGB images share some commonalities, es-
pecially edges and corners. However, if we compare them
closely, we find subtle differences, since event-cameras
recordings are highly correlated to the dynamic of the scene.
If the RGB/event-frames analogy hold, event-based vision
could benefit widely from advancements in standard com-
puter vision. As an example, recent computer vision re-
search provides strong evidence in support of transfer learn-
ing from large dataset, e.g., the ImageNet dataset [11, 18].
Further works explore and validate the correlation between
3D Human Pose Estimation and reconstruction tasks [59].
These insights are supported by common intuition, as both
tasks involve an understanding of the structure of the scene.
Despite the differences between event and standard cam-
eras, recent works validate the transfer learning hypothesis
from RGB to constant-count representation [34] and learn-
able representations [13]. Moreover, Rebecq et al. provide
evidence for direct transfer learning by predicting natural
images from spatio-temporal event-frames [46].

Our work contributes further to this line of research with
two evaluations. First, we compare ImageNet and random
initialized models for solving monocular human pose esti-
mation with both constant-count and voxel-grid represen-
tations. Second, we attempt to validate if different pre-
training tasks help with event-based Human Pose Estima-
tion. For this purpose, we train an auto-encoder consisting
of a ResNet-34 as encoder and a small DeconvCNN as de-
coder. For comparison, we train a ResNet-34 and a ResNet-
50 CNN on action recognition task, which has lower corre-
lation with human pose estimation. Next, we test our ap-
proach with 4 backbones (random-initialized, action recog-
nition task, reconstruction task, and ImageNet initialized)
and compare the results on DHP19 dataset. Table 3 reports
the MPJPE for both constant-count and voxel-grid repre-
sentations. Constant-count frames benefit more from stan-
dard computer vision, especially from ImageNet transfer-
learning. In fact, our model with ImageNet-pretrained
ResNet34 outperforms all others approaches when we adopt
constant-count representation.

Spatio-temporal frames have few similarities with stan-
dard RGB images; in fact, it is unclear if this approach can
benefit from ImageNet transfer learning. Our experiments
reflects these differences, as ImageNet pretrained ResNet-
34 and ResNet-50 backbones have lower performance than
the random-initialised counterpart.

We discuss Table 3 to explore further if recent research
in pre-training tasks [59] is valid in event-based vision. De-
spite the correlations evidences in RGB settings, we found
that auto-encoders backbones are performing worse than the
classification counterpart; this conclusion is valid from both

representations. Indeed, action-recognition pre-training
emerges favorably, especially for spatio-temporal voxel-
grid. Our interpretation is that pre-training assumptions
fail because of the spatial sparsity of event-representations.
Further research is mandatory to unlock better pre-training
strategies for event-based vision.

Table 3: We report the Mean Per Joint Precision Error
(MPJPE, in mm) of our 3-stages approach equipped with
different initialization strategies. ResNet-50 with ImageNet
initialization emerges favorably for both constant-count and
spatio-temporal voxel-grid representations. Moreover, we
find no benefits in adopting a reconstruction task as pre-
training task, although standard computer vision research
suggests the opposite[59].

Repr. Model Initialization MPJPE (mm)

co
ns

ta
nt

-c
ou

nt ResNet-34

Random initialized 92.22
Action recognition 95.19
Reconstruction 98.89
ImageNet 92.09

ResNet-50
Random initialized 92.22
Action recognition 92.26
ImageNet 92.51

vo
xe

l-
gr

id

ResNet-34

Random initialized 93.06
Action recognition 95.26
Reconstruction 105.44
ImageNet 95.51

ResNet-50
Random initialized 93.88
Action recognition 93.54
ImageNet 93.98

Per-movements comparison. Events are highly cou-
pled with the dynamic of the scene. If parts of the body
are static, fewer events are recorded and, consequently,
spatial sparsity increases, making prediction tasks more
challenging. To evaluate the impact of static body parts
on our approach, we propose a per-movements study for
our ImageNet-pretrained method. Table 4 compares our
constant-count and spatio-temporal voxel-grid approaches
with DHP19 [5] event-based stereo approach1. Differ-
ently from [5], our approach is based upon the more recent
state of the art solutions [41, 42] and reaches a higher per-
movement accuracy and lower per-movement standard de-
viation. As expected, performance decreases when subjects
perform movements with only parts of the body (e.g., Punch
up forwards left, where legs are static). This drop in perfor-
mance matches the results of the stereo-vision approach as
well (e.g., Punch forwards left/right). On the other hand,
we notice above average performances for movements that
involve the whole body, such as knee lift and hand move-
ments (during these movements, subjects move on the spot
and the whole body generates events).

1We evaluate mean and standard deviation from results reported in [5]



(a) (b) (c) (d) (e) (f) (g)

Figure 6: Our approach achieves good performance when subjects are actively moving, as in (a)–(d), but fails to predict the
skeletons satisfactorily when some parts of the body remain static during the movements, as in (e)–(g).

Table 4: We perform a per-movement comparison of
MPJPE between ours and DHP19 [5] stereo approach. Both
fail when parts of the body are static and shine when
the scene is more dynamic.Worst results, per column.
Best results, per column.

Stereo [5] Voxel-grid Constant-count
Left arm abduction 115.04 82.32 80.41
Right arm abduction 99.65 81.92 79.68
Left leg abduction 84.65 110.07 105.39
Right leg abduction 78.35 99.87 93.81
w Left arm bicep curl 103.29 90.49 86.40
Right arm bicep curl 121.06 80.75 95.73
Left leg knee lift 74.97 71.60 72.14
Right leg knee lift 71.95 78.47 72.49
Walking 3.5 km/h 58.75 86.88 84.74
Single jump up-down 82.23 80.11 76.73
Single jump forwards 80.53 89.92 85.10
Multiple jumps 53.57 99.47 93.83
Hop right foot 55.56 89.51 84.16
Hop left foot 54.21 97.86 91.60
Punch forward left 148.57 114.97 117.87
Punch forward right 135.92 98.35 93.69
Punch up forwards left 111.35 124.89 124.81
Punch up forwards right 131.46 103.01 106.56
Punch down forwards left 106.92 105.98 105.04
Punch down forwards right 98.28 90.02 89.90
Slow jogging 55.16 98.05 89.11
Star jumps 76.23 108.89 106.77
Kick forwards left 111.66 117.92 93.07
Kick forwards right 112.49 117.91 109.85
Side kick forwards left 118.00 128.38 120.39
Side kick forwards right 104.67 115.76 111.86
Hello left hand 96.22 89.08 87.22
Hello right hand 101.32 71.82 69.83
Circle left hand 110.59 99.17 95.89
Circle right hand 112.44 84.00 76.55
Figure-8 left hand 110.69 90.95 88.10
Figure-8 right hand 123.59 72.42 72.49
Clap 122.93 81.03 77.77
Mean (standard deviation) 98.06 (±16.60) 95.51 (±15.30) 92.09 (±14.49)

5. Discussion and Conclusions

We have proposed a deep learning approach for event-
based human pose estimation from a single event-camera.
Our method aggregated events into synchronous tensor rep-
resentations to feed a multi-stage Convolutional Neural Net-
work. Our architecture predicted three orthogonal heatmaps
which are triangulated to obtain the final 3D pose. We
validated our approach on the event-based DHP19 dataset,
where it showed satisfactory per-movement performance
against DHP19 stereo approach [5]. Moreover, we proposed
Event-Human3.6m, a new dataset of simulated events from
the standard Human3.6m [20]. Event-Human3.6m extends
DHP19 with more challenging movements and actions. We
conducted experiments on the synthetic dataset and adopted
a cross-subject protocol which is comparable to the stan-
dard RGB testing. Although we recognize the differences
between synthetic and RGB datasets, our proposal achieves
an accuracy comparable to RGB approaches. These experi-
ments demonstrate the effectiveness of our method.

Figure 6 reports challenging examples where our method
underperforms. Static parts of the body generated fewer
events and are difficult to predict accurately. We leave this
issue for further investigations. Next, we conducted exten-
sive ablations studies to understand how event-based vision
can benefit from RGB transfer learning and pre-training.
Experiments showed that ImageNet pre-training boosts our
approach more than pre-training tasks. Moreover, action
recognition pre-training task archived higher performances
than reconstruction pre-training, although extensive com-
puter vision research suggests the opposite. Further re-
search should consider closely the relationships between
events and RGB cameras in transfer-learning and multi-task
learning settings. Further works to answer these open ques-
tions can benefit from our synthetic Event-Human3.6m.
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[10] Andrew I Comport, Éric Marchand, and François
Chaumette. A real-time tracker for markerless aug-
mented reality. In The Second IEEE and ACM International
Symposium on Mixed and Augmented Reality, 2003.
Proceedings., pages 36–45. IEEE, 2003. 2

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009. 7

[12] Guillermo Gallego, Tobi Delbruck, Garrick Michael Or-
chard, Chiara Bartolozzi, Brian Taba, Andrea Censi, Stefan
Leutenegger, Andrew Davison, Jorg Conradt, Kostas Dani-
ilidis, and et al. Event-based vision: A survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, page
1–1, 2020. 3

[13] Daniel Gehrig, Antonio Loquercio, Konstantinos G Derpa-
nis, and Davide Scaramuzza. End-to-end learning of repre-
sentations for asynchronous event-based data. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 5633–5643, 2019. 2, 7

[14] Daniel Gehrig, Michelle Rüegg, Mathias Gehrig, Javier Hi-
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