

1

Abstract

Event cameras are robust neuromorphic visual sensors,

which communicate transients in luminance as events.

Current paradigm for image reconstruction from event data

relies on direct optimization of artificial Convolutional

Neural Networks (CNNs). Here we proposed a two-phase

neural network, which comprises a CNN, optimized for

Laplacian prediction followed by a Spiking Neural Network

(SNN) optimized for Poisson integration. By introducing

Laplacian prediction into the pipeline, we provide image

reconstruction with a network comprising only 200

parameters. We converted the CNN to SNN, providing a full

neuromorphic implementation. We further optimized the

network with Mish activation and a novel convoluted CNN

design, proposing a hybrid of spiking and artificial neural

network with < 100 parameters. Models were evaluated on

both N-MNIST and N-Caltech101 datasets.

1. Introduction

Some of the first and greatest successes in neuromorphic

computing architectures have been in vision and sound

processing [1]. Most neuromorphic vision sensors

communicate transients in luminance via the Address Event

Representation (AER) protocol. They are comprised of an

array of silicon neurons; each generates spikes in response

to a change in luminance in one particular location (or

pixels). Spikes are time-multiplexed over an asynchronous

data bus via an address encoder, which designates each

spike with a corresponding address (usually, the neuron’s

x-y pixel coordinate). These frame-less and event-driven

neuromorphic Dynamic Vision Sensors (DVSs) can resolve

thousands of frames per second, have a fine temporal

resolution, high dynamic range, no motion blur, and high

signal-to-noise ratio. Moreover, since DVSs perform

sensor-level data compression, they optimize data transfer,

storage, and processing [2].

Recent works have narrowed the gap between

conventional frame-based computer vision and that of an

event-driven camera by using Convolutional Neural

Networks (CNNs), which were optimized to reconstruct

natural videos from events. For example, by utilizing a 10M

parameters CNN termed U-net [3], Scaramuzza and

colleagues reconstructed a video from its events, achieving

state-of-the-art results [4] [5]. Recently, combined with

recurrent connections and residual blocks, a CNN was used

to reconstruct images with a smaller number of parameters,

demonstrating a fast, lightweight network with only a minor

drop in performance [6].

Here we proposed a Neural Engineering Framework

(NEF)-based Spiking Neural Network (SNN) [7] for image

reconstruction from event cameras, demonstrating a

complete neuromorphic (brain-inspired) process. The

Neural Engineering Framework (NEF) is one of the most

utilized theoretical frameworks in neuromorphic computing.

It brings forth a theoretical framework for a neuromorphic

encoding, decoding, and transformation of mathematical

constructs with spiking neurons, allowing the

implementation of functional large-scale neural networks

[8]. NEF was used to design a broad spectrum of

neuromorphic frameworks ranging from robotic control [9]

and visual processing [10] to perception [11]. It serves as the

foundation for Nengo, a Python-based "neural compiler,"

which translates high-level descriptions to low-level neural

models [12]. A version of NEF was compiled to work on

both analog and digital neuromorphic circuitry [13],

including the TrueNorth [14], the Loihi [15], the NeuroGrid

[16], and the SpiNNaker [17].

In our proposed framework, events are driven into a

convolutional SNN for processing, enabling process

execution by neuromorphic hardware, considered energy-

efficient [18]. Using Poisson integration [19] to reconstruct

the image's intensity from its Laplacian, we demonstrate a

reduced number of trainable parameters. Furthermore, we

propose an even more compact non-spiking CNN, with

Mish activation [20], achieving adequate image

reconstruction with less than 100 parameters. We

demonstrated our approach using the N-MNIST and N-

Caltech101 datasets [21].

Image Reconstruction from Neuromorphic Event Cameras using Laplacian-

Prediction and Poisson Integration with Spiking and Artificial Neural Networks

Hadar Cohen Duwek Albert Shalumov Elishai Ezra Tsur*

Neuro-Biomorphic Engineering Lab (NBEL)

Department of Mathematics and Computer Science, The Open University of Israel

*
elishai@nbel-lab.com

2

2. Related works

Poisson image reconstructions are commonly used to

reconstruct an image from its gradients [22]. Previous

works solved the events-to-intensity reconstruction

problem using an estimated gradient map of the image and

integrated the gradients via Poisson integration. For

example, Kim and colleagues used an extended Kalman

filter to estimate a 2D gradient image from a rotating event

camera. They used the gradient image to reconstruct the

image by Poisson integration [23] [24]. Rebecq and

colleagues extended the algorithm to cope with 3D scenes

and 6-DoF motion [25]. Barua and colleagues also

proposed reconstructing images from events by optimizing

a sparse patch-based dictionary to match event patches with

gradient patches using a simulator [26]. Their approach also

utilized Poisson integration for image reconstruction.

Previous studies applied adversarial learning, through the

use of Generative Adversarial Networks (GANs), to

reconstruct High Dynamic Range (HDR) imagery from

events [27] [28] [29]. GANs comprise a generator and a

discriminator. The generator (usually composed of a U-Net

architecture) aims to reconstruct an intensity image from

events, which the discriminator cannot distinguish from the

Ground Truth (GT) intensity image. Although GANs are

unstable and hard to train [30], they have provided state-of-

the-art performance on real-world event camera-generated

datasets. Recently, Mohammad and colleagues proposed an

intricate architecture, which involves optical flow

estimation, feature enhancement, and super-resolution

networks for image reconstruction in super-resolution and

HDR [31]. These networks, however, are not based on

SNNs and entail high parameter space.

Several works used events from event-based vision

sensors as inputs to neuromorphic hardware-implemented

SNN. For example, Riccardo and colleagues used Loihi-

implemented SNN for event-driven gesture recognition

[32]; Osswald and colleagues used SNNs to

neuromorphically solve the stereo correspondence [33];

Jiand and colleagues used event-driven SNNs for object

tracking [34], Seifozzakerini and colleagues used them for

line detection [35], and Ezra Tsur and colleagues used evets

to elucidate optical flow [10]. They were not used, however,

for image reconstruction.

 Here, we aim to solve the event-to-intensity

reconstruction task on both N-MNIST and N-caltech101

event-based datasets with an SNN. Algorithm was based on

a CNN optimized for Laplacian Prediction, which was

Figure 1. Visualization of the model’s inputs. (A) An example image from the N-Caltech dataset and its corresponding events and

event-frame tensors �; (B). Event frame tensors stacked and imaged by averaging and coloring each two consecutive frames (1st and

2nd frames averaged and visualized as red, the 3rd and 4th as green, and the 5th and 6th as blue).

3

transferred to an SNN for inference. Inferred image

Laplacian was introduced to a second SNN, optimized to

solve the Poisson equation image reconstruction (filling-in

SNN). We demonstrate that:

• CNN, optimized for Laplacian prediction, following the

Poisson integration neural network, enable image

reconstruction with compact parameter space.

• Image reconstruction can be entirely realized using a

spiking CNN and a feedforward SNN, which can be

implemented on neuromorphic hardware.

• Image reconstruction can be achieved with a neural

network with shared-event filters CNN and Mish

activation with less than 100 parameters.

3. Methods

3.1. Input representation and pre-processing

N-MNIST and N-Caltech101 are preprocessed as

follows: each event-camera file was converted to an event-

frame tensor �, which has the dimensions � � � � �,

where � and � were shaped to 34 and T, the number of

event-frames constituting each image in the dataset, is 90

and 120 for the N-MNIST and N-Caltach101 datasets,

respectively. The N-Caltach101 was down-sampled from

180 � 240 pixels. � is defined using:

���, �, �� � ∑ ��
�����∙∆�
���∙∆� , (1)

where ∆� = 50 mSec, �� ∈ ��1,1� is the polarity (increasing

or decreasing luminance change event) of the event in time

step t, � ∈ ��1,1�. Furthermore, each event frame is pre-

processed by applying a spatial median filter, reducing

noise with a 3x3 kernel. Input representation and pre-

processing are described in Figure 1.

3.2. CNN Laplacian Prediction

Our approach initiates with a CNN, which predicts the

Image’s Laplacian given frame tensors, followed by a SNN

optimized for Poisson Integration (Figure 2). We propose

a five-layer CNN, where the first two comprise single-

strided 3x3 convolutions (without down-sampling), and the

last three layers comprise a single-strided 1x1 convolution

kernel.

We used the Mean Absolute Error (MAE) loss in

conjunction with the Structural Similarity Index Measure

(SSIM) loss [36] and an Edge loss [37]:

 � !! � "� ∙ #$�%�, �&'

 (") ∙ *1 � ++,# -.,���, .,% �&'/0
 ("1 ∙ �234_� !! -.,���, .,% �&'/,

 (2)

where "� � 1, ") � 0.25, "1 � 0.25, � and �& are the actual

image and predicted Laplacians, respectively, and ., is the

Poisson integration algorithm [22]. Note that while MAE

loss was calculated directly from actual and predicted

Laplacians, SSIM and edge loss were calculated from the

reconstructed and predicted images. Edge loss allows the

preservation of edges in the reconstructed image by

considering edge similarity between the ground-truth

intensity image and the reconstruction. We derive edges by

calculating the squared sum of the image’s derivatives in

both vertical and horizontal directions. Derivative maps

were thresholded to create binary maps. Finally, we use

mean binary cross-entropy between the two maps to

calculate the edge loss. Neurons’ activations were defined

as Rectified Linear Units (ReLU) [38]. The CNN was

implemented using Keras [39].

We divided the N-caltech101 dataset sequences into

6097 training event sequences for network training, 1306

validation event sequences, and 1306 testing event

Figure 2. SNN architecture. At training time, CNNs are train to predict the Image’s Laplacian. The trained CNNs are converted to

SNNs for inference. At inference time, the predicted Laplacian is driven to a SNN, which performs Poisson integration, providing a

fully spiking implementation of image reconstruction from event camera.

4

sequences. We use Adam optimizer [40], with a batch size

of 16 and an initial learning rate of 0.005. We set a 20%

learning rate scheduling when reaching a plateau, with a

minimum value of 2 ∙ 1089. We consider training plateau,

after six epochs, with non-improving validation loss, with:

:4!�;<= > :4!�?@A�1 � B�, (3)

where B is the minimal required relative improvement (we

use B=0.005). We stop training when mean validation

SSIM has not improved over 20 epochs, with:

:4!�;<= > :4!�?@A � ∆, (4)

where ∆ is the minimal required absolute improvement (we

use ∆=0.005). We set the earliest stop epoch to 150.

3.3. CNN to SNN conversion

The trained CNN was converted to SNN using the Neural

Engineering Framework (NEF)-based NengoDL library

[41]. Here, ReLU activations were converted to Spiking

rectified linear activation in the SNN, with which neurons’

firing rate is proportional to positive input. Neural activity

is rectified at zero. This spiking activation scheme is

defined using a synaptic time constant (specifying a low-

pass filter) and a maximal firing rate. Here we used a

synaptic time constant of 10 mSec and a maximal firing rate

of 100 and 5,000 Hz. Due to the temporal nature of SNN,

each input image was presented to the model for 100 mSec.

Spiking CNNs are used as differentiable approximations of

their non-spiking versions. Network architecture is

visualized in Figure 3.

3.4. Filling-in SNN

To neuromorphically implement Poisson integration, we

designed a feedforward SNN. By using a finite difference

numerical method, the Poisson equation can be rewritten as

a linear system [42]:

$GH⃗ � J HHH⃗ , (5)

where K is the image to be reconstructed, GH⃗ is a column

vector representing the pixels of the image K arrange in a

natural ordering and $ is the Laplace matrix defined as:

A =

⎣
⎢⎢
⎢⎢
⎢
⎡ O �, 0
�, O �,
0 �, O

⋯
0 0 0
0 0 0
0 0 0⋮ ⋱ ⋮

0 0 0
0 0 0
0 0 0

⋯
O �, 0
�, O �,
0 �, O ⎦

⎥⎥
⎥⎥
⎥
⎤

 ,

where , is the identity matrix, and O is defined as:

D =

⎣
⎢⎢
⎢⎢
⎢
⎡ 4 �1 0
�1 4 �1
0 �1 4

⋯
0 0 0
0 0 0
0 0 0⋮ ⋱ ⋮

0 0 0
0 0 0
0 0 0

⋯
4 �1 0

�1 4 �1
0 �1 4 ⎦

⎥⎥
⎥⎥
⎥
⎤

.

The size of $ depends on the image dimension. Here, we

assume a fixed � matrix, where � � $8�. The

reconstructed image vector GH⃗ can be calculated using:

GH⃗ � �J HHH⃗ (6)

This solution was implemented as an SNN by connecting

two neuron ensemble layers with a weight matrix �.

Notably, W is calculated once for all the inputs, and it is not

trainable, thus dramatically reducing the number of the

network’s parameters. The dimensions of � for input with

spatial dimension V � W are VW � VW.

Figure 3. Shared-event filters CNN architecture. A < 100 parameters CNN for image reconstruction from event data.

5

3.5. Direct reconstruction

As our network design comprises two parts for image

reconstruction: one for Laplacian prediction and the other

for filling-in, we further compared it to a similar-size CNN,

optimized for direct reconstruction (event-data to a

reconstructed image). To train these networks, we modified

the loss function, specified in Equation 2 as follows:

� !! � "� ∙ #$�%,, ,X'

 (") ∙ �1 � ++,#�,, ,X�)
 ("1 ∙ �234_� !!�,, ,X�,

 (7)

where "� � 1, ") � 0.25 and "1 � 0.25, , is the actual image,

and ,X is the reconstructed image.

3.6. Shared-event filters CNN

We utilized a novel CNN design with which the number

of trainable parameters is further diminished to < 100 by

curing the input as a video-like signal. The input batch is

of dimension : � � � � � �, accounting for batch size,

height, width, and the number of frames, respectively.

Inputs are reshaped and transposed to �: ∗ �� � � � �

dimension and processed with a set of Z convolutional

filters. Following this phase, the �: ∗ �� � � � � � Z data

is reshaped and transposed again, resolving with a : � � �
� � �� ∗ Z� tensor. A second set of convolutions is

applied, with a final single convolutional layer, resulting in

a : � � � � tensor. While the early layers can be thought

of as performing preprocessing at the frame level, the

second stage combines these preprocessed frames to

compute the Laplacian. See Discussion for further details.

4. Results

To evaluate our proposed framework, we trained six five-

layers Laplacian predicated CNNs with varying width

constituting a different number of parameters (see Table 1

for further details). Model #5, which comprises only 277

trainable parameters, was converted to SNN to evaluate a

full neuromorphic pipeline. Predicted Laplacians were

driven to the Filling-in SNN, which was described above.

4.1. Reconstruction via Laplacian predication

Table 1 summarizes CNN architectures and their

corresponding performance measured on the test set for

each network. Notably, the network’s number of

parameters is not directly correlated to performance as a

smaller network (model #4) outperformed more extensive

networks. We measured Peak signal-to-noise ratio (PSNR),

SSIM, and Mean Square Error (MSE).

Predicted intensity images for the N-MNIST dataset

from CNN model #6 are shown in Figure 4. Examples of

predicted intensity images for the N-Caltech101 images

from three selected CNN models (#1, #4, #5) are shown in

Figure 5. Our results show that although having only 1,691

parameters, model #4 has comparable performance to

model #1, which features 53,941 parameters. We

demonstrate reasonable results with networks comprising

only [200 parameters (models #5 and #6).

To demonstrate a fully spiking architecture, we

converted model #5 (due to its relatively small number of

trained parameters and high performance (Table 1)) to an

SNN as was described earlier. Selected results are presented

in Figure 5 (model 5 SNN). As expected, while providing

adequate results with a maximal firing rate of 100 Hz, the

spiking version of model 5 is noisier than its non-spiking

version. These results are dramatically improved when the

maximal firing rate is set higher. As shown in Figure 5 and

Table 1, a 5,000 Hz SNN is comparable to its non-spiking

version. We note, however, that a high spiking rate takes a

toll on the system's energy efficiency.

Figure 4. N-MNIST results. � , �&, , , ,X are the Ground Truth

(GT) Laplacian, the predicted Laplacian, The GT image, and

the reconstructed image, respectively.

6

4.2. Direct reconstruction

We further compared our reconstruction via Laplacian

prediction neural network to a similar-size CNN, optimized

for direct. With direct reconstruction, there is no need for a

Poisson integration process. We used CNNs models #1, #4,

and #5 to directly reconstruct the image from the event

tensors (see Methods).

Results are summarized in Table 1. Model #1 (the

largest) achieved the best performance among the direct

prediction models. Results show that with the specified loss

function (Equation 7) and a 5-layers CNN, direct

reconstruction only predicts the image’s edges. Selected

reconstructed images are shown in Figure 4. Notably, even

though model #1 comprises > 50,000 parameters, a 205

parameters model (#6) when Laplacian prediction is

involved outperforms it.

4.3. Shared-events filters CNN

To further optimize the number network’s parameters,

we designed a smaller, more intricate architecture,

achieving adequate results with < 100 parameters (see

Methods for further details). We tested this architecture

with both ReLU and Mish activations. Mish is a smooth

nonmonotonic function defined using \��� � � ∙
tanh �ln�1 (4a��. Mish was recently shown to outperform

traditional activations in various cases, probably due to its

positively unbounded, negatively bounded, smooth, and

nonmonotonic characteristics [20].

Selected reconstructed images are shown in Figure 4.

Even though this network is small, its performance is

comparable to other, much larger networks (Table 1).

Figure 5. Selected image reconstructions. GT stands for ground truth (for reference); models #1, #4 and #5 stands for the neural

networks, which feature Laplacian prediction followed by Poisson integration (reconstruction via Laplacian prediction); S-E stands

for the Shared-events filters CNN; and D-R stands for the direct reconstruction CNN.

7

5. Discussion

We introduced CNNs for image reconstruction from

event cameras via the prediction of the image’s Laplacian

and Poisson integration solved with an SNN. As Poisson

integration is solved with an SNN, which does not require

any learning procedure, the number of trainable parameters

is dramatically improved. We further converted the CNNs

to SNNs for a complete neuromorphic design. Our results

demonstrate that conventional CNNs, with a low number of

parameters, without a U-net, not auto-encoders,

successfully reconstructs images from the N-Caltech101

and N-MNIST dataset. We show that while conventional

simple-layered CNN, optimized for direct image

reconstruction from events, can only reconstruct the

image’s edges, it can be used to elucidate the image

Laplacian reasonably accurately. Thus, when used in

conjunction with a filling-in neural network, it can be used

to create an efficient neural network from image

reconstruction.

While the Poisson integration SNN does not require

training, it entails resolving a large matrix with nine

constant parameters. This SNN can be further improved by

dividing the event frames into patches, independently

predicting and reconstructing them, finally, stitching them

together to produce a full reconstructed image.

We further demonstrate our Laplacian prediction- and

Poisson integration-based reconstruction with a

dramatically reduced number of parameters by utilizing a

novel CNN design and Mish activation. We demonstrate

adequate image reconstruction with < 100 parameters

CNN. This network reduces the number of parameters by

curing the input as a video-like signal where each non-

spatial dimension corresponds to a time slice. Most models

use 2D convolutions as the first processing stage. 2D

convolutions consider both spatial and time dimensions,

with each filter defining a different convolution volume.

We perform the same computation on all the frames to

reduce the number of parameters, transforming the events

embedded within them to a different, more useful

representation. This shared-events filters CNN was not

converted here to a fully spiking implementation. In future

work, it might be implemented as SNN by utilizing

recurrent network topology. In this network design, each

event frame should be separately processed in the first two

spatial convolution layers. With SNN, an integrator,

defined with a recurrent connection, can be utilized as a

memory unit, comprising � � � � �� ∗ Z� dimensions,

collecting Z temporal features. Three additional

convolution layers will be applied to the integrator to

process the whole Spatio-temporal data to predict the

Laplacian.

We show that SNNs perform fairly well, despite

featuring a slow maximal firing rate of only 100 Hz. Note

that in contrast to its non-spiking version, inputs are

sequentially presented to the network for only 100 mSec

each. Along with the low-pass synapse filters that average

input information over time, allow previous input data to

persist in the network and interfere with the generation of a

new predicted intensity image. A reset switch can be further

implemented, with which reconstruction might be

improved.

Our models were demonstrated on the N-MNIST and N-

Caltech101 datasets, which were “artificially” created with

a saccade-moving event camera [21]. Data acquisition was

based on a fixed non-biologically plausible three saccades.

Our method is therefore limited to this precise method of

data acquisition. However, we hypothesized that our

Laplacian prediction- and Poisson integration-based

methods could be utilized for arbitrary event data with

relatively simple modifications. A recurrent architecture

can be used without a U-shaped network in which skip

connections are utilized to fill in pixel intensity within the

image’s gradients.

Acknowledgments

This work was supported by the Israel Innovation Authority

(EzerTech) and the Open University of Israel research

grant.

 # filters params PSNR SSIM MSE

b& +
P

I

1 50,100,50,20,1 53,941 24.29 0.864 0.0042

2 50,50,50,20,1 28,891 24.31 0.859 0.0042

3 20,20,20,20,1 5,581 24.47 0.858 0.0042

4 10,10,10,10,1 1,691 24.67 0.861 0.0039

5 3,3,3,3,1 277 24.23 0.844 0.0042

6 3,1,3,1,1 205 23.86 0.838 0.0047

SM 3*,2*,3,3,1 93 23.04 0.824 0.0058

SR 3*,2*,3,3,1 93 11.40 0.326 0.0734

SNN.1 3,3,3,3,1 277 17.90 0.679 0.0217

SNN5 3,3,3,3,1 277 19.36 0.756 0.0147

c&

1 50,100,50,20,1 53,941 19.53 0.519 0.0117

4 10,10,10,10,1 1,691 19.60 0.512 0.0114

5 3,3,3,3,1 277 19.22 0.490 0.0124

Table 1. Architecture and Performance table. �& (., stands for

the neural networks, which feature Laplacian prediction followed

by Poisson integration (reconstruction via Laplacian prediction).

,X stands for direct reconstruction. SM and SR stand for shared-

event filters CNN, with Mish and ReLU activations. respectively.

Filters marked with * were applied to each temporal channel (see

text). SNN.1 and SNN5 stand for a full spiking implementation of

model #5, with a maximal firing rate 100 Hz and 5 kHz,

respectively. PSNR, SSIM and MSE metrics were calculated on

the final reconstructed image.

8

References

[1] G. Indiveri and R. Douglas, "Neuromorphic vision

sensors," Science, vol. 288, no. 5469, pp. 1189-1190,

2000.

[2] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco

and T. Delbruck, "Retinomorphic event-based vision

sensors: bioinspired cameras with spiking output,"

Proceedings of the IEEE, vol. 102, no. 10, pp. 1470--1484,

2014.

[3] O. Ronneberger, P. Fischer and T. Brox, "U-net:

Convolutional networks for biomedical image

segmentation," in International Conference on Medical

image computing and computer-assisted intervention,

2015.

[4] H. Rebecq, R. Ranftl, V. Koltun and D. Scaramuzza,

"Events-to-video: Bringing modern computer vision to

event cameras," in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

2019.

[5] H. Rebecq, R. Ranftl, V. Koltun and D. Scaramuzza,

"High speed and high dynamic range video with an event

camera," IEEE transactions on pattern analysis and

machine intelligence, 2019.

[6] C. Scheerlinck, H. Rebecq, D. a. B. N. Gehrig, R. Mahony

and D. Scaramuzza, "Fast image reconstruction with an

event camera," in Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision, 2020.

[7] W. Maass, "Networks of spiking neurons: the third

generation of neural network models," Neural networks,

vol. 10, no. 9, pp. 1659--1671, 1997.

[8] C. Eliasmith and C. H. Anderson, Neural engineering:

Computation, representation, and dynamics in

neurobiological systems, MIT press, 2003.

[9] Y. Zaidel, A. Shalumov, A. Volinski, L. Supic and E. E.

Tsur, "Neuromorphic NEF-based inverse kinematics and

PID control," Frontiers in Neurorobotics, vol. 15, 2021.

[10] E. E. Tsur and M. Rivlin-Etzion, "Neuromorphic

implementation of motion detection using oscillation

interference," Neurocomputing, vol. 374, pp. 54--63, 2020.

[11] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T.

DeWolf, Y. Tang and D. Rasmussen, "A large-scale model

of the functioning brain," Science, vol. 338, no. 6111, pp.

1202--1205, 2012.

[12] T. a. B. J. Bekolay, E. Hunsberger, T. DeWolf, T. C.

Stewart, D. Rasmussen, X. Choo, A. Voelker and C.

Eliasmith, "Nengo: a Python tool for building large-scale

functional brain models," Frontiers in neuroinformatics,

vol. 7, p. 48, 2014.

[13] A. Hazan and E. Ezra Tsur, "Neuromorphic Analog

Implementation of Neural Engineering Framework-

Inspired Spiking Neuron for High-Dimensional

Representation," Frontiers in Neuroscience, vol. 15, no.

109, 2021.

[14] K. Fischl, A. Andreou, T. Stewart and K. Fair,

"Implementation of the neural engineering framework on

the TrueNorth neurosynaptic system," in IEEE Biomedical

Circuits and Systems Conference (BioCAS), 2018.

[15] C.-K. Lin, A. Wild, G. Chinya, Y. Cao, M. Davies, D. M.

Lavery and H. Wang, "Programming spiking neural

networks on intel’s loihi," Computer, vol. 51, no. 3, pp.

52-61, 2018.

[16] K. Boahen, "A neuromorph's prospectus," Computing in

Science & Engineering, vol. 19, no. 2, pp. 14-28, 2017.

[17] A. Mundy, J. S. T. Knight and S. Furber, "An efficient

SpiNNaker implementation of the neural engineering

framework," in International Joint Conference on Neural

Networks (IJCNN), 2015.

[18] M. Pfeiffer and T. Pfeil, "Deep learning with spiking

neurons: opportunities and challenges," Frontiers in

neuroscience, vol. 12, p. 774, 2018.

[19] P. Perez, M. Gangnet and A. Blake, "Poisson image

editing," in ACM SIGGRAPH, 2003.

[20] D. Misra, "Mish: A self regularized non-monotonic neural

activation function," arXiv preprint, p. 1908.08681, 2019.

[21] G. Orchard, A. Jayawant, G. K. Cohen and N. Thakor,

"Converting static image datasets to spiking neuromorphic

datasets using saccades," Frontiers in neuroscience, vol. 9,

p. 437, 2015.

[22] T. Simchony, R. Chellappa and M. Shao, "Direct

Analytical Methods for Solving Poisson Equations in

Computer Vision Problems," IEEE transactions on pattern

analysis and machine intelligence, vol. 12, no. 5, pp. 435--

446, 1990.

[23] H. Kim, A. Handa, R. Benosman, S.-H. Ieng and A. J.

Davison, "Simultaneous mosaicing and tracking with an

event camera," J. Solid State Circ, vol. 43, pp. 566-576,

2008.

[24] H. Kim, S. Leutenegger and A. J. Davison, "Real-time 3D

reconstruction and 6-DoF tracking with an event camera,"

in European Conference on Computer Vision, 2016.

[25] H. Rebecq, T. Horstschafer, G. Gallego and D.

Scaramuzza, "EVO: A Geometric Approach to Event-

Based 6-DOF Parallel Tracking and Mapping in Real

Time," IEEE Robotics and Automation Letters, vol. 2, no.

2, pp. 593-600, 2016.

[26] S. Barua, Y. Miyatani and A. Veeraraghavan, "Direct face

detection and video reconstruction from event cameras," in

2016 IEEE winter conference on applications of computer

vision (WACV), 2016.

[27] M. Mostafavi, L. Wang and K.-J. Yoon, "Learning to

reconstruct hdr images from events, with applications to

depth and flow prediction," International Journal of

Computer Vision, pp. 1--21, 2021.

[28] B. su, L. Yu and W. Yang, "Event-Based High Frame-Rate

Video Reconstruction With A Novel Cycle-Event

Network," in IEEE International Conference on Image

Processing (ICIP), 2020.

[29] L. Wang, T.-K. Kim and K.-J. Yoon, "Eventsr: From

asynchronous events to image reconstruction, restoration,

and super-resolution via end-to-end adversarial learning,"

in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2020.

9

[30] L. Mescheder, A. Geiger and S. Nowozin, "Which training

methods for GANs do actually converge?," in

International conference on machine learning, 2018.

[31] M. Mostafavi, J. Choi and K.-J. Yoon, "Learning to Super

Resolve Intensity Images from Events," in IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), 2020.

[32] R. Massa, A. Marchisio, M. Martina and M. Shafique, "An

efficient spiking neural network for recognizing gestures

with a dvs camera on the loihi neuromorphic processor,"

arXiv preprint, p. 2006.09985, 2020.

[33] M. Osswald, S.-H. Ieng, R. Benosman and G. Indiveri, "A

spiking neural network model of 3D perception for event-

based neuromorphic stereo vision systems," Scientific

reports, vol. 7, no. 1, pp. 1-12, 2017.

[34] Z. Jiang, Z. Bing, K. Huang and A. Knoll, "Retina-based

pipe-like object tracking implemented through spiking

neural network on a snake robot," Frontiers in

neurorobotics, vol. 13, p. 29, 2019.

[35] S. Seifozzakerini, W.-Y. Yau, B. Zhao and K. Mao,

"Event-Based Hough Transform in a Spiking Neural

Network for Multiple Line Detection and Tracking Using a

Dynamic Vision Sensor," in BMVC, 2016.

[36] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli,

"Image quality assessment: From error visibility to

structural similarity," IEEE transactions on image

processing, vol. 13, no. 4, pp. 600-612, 2004.

[37] C. Godard, O. Mac Aodha and G. J. Brostow,

"Unsupervised monocular depth estimation with left-right

consistency," in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017.

[38] A. F. Agarap, "Deep learning using rectified linear units

(relu)," arXiv preprint, p. 1803.08375, 2018.

[39] Keras, 2021. [Online]. Available: https://keras.io/.

[Accessed 22 3 2021].

[40] D. P. Kingma and J. Ba, "Adam: A method for stochastic

optimization," arXiv preprint, p. 1412.6980, 2014.

[41] D. Rasmussen, "NengoDL: Combining deep learning and

neuromorphic modelling methods," Neuroinformatics, vol.

17, no. 4, pp. 611--628, 2019.

[42] V. A. Volpert, Elliptic Partial Differential Equations.,

Springer, 2011.

