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Abstract

We propose a generic event camera calibration frame-
work using image reconstruction. Instead of relying on
blinking LED patterns or external screens, we show that
neural-network–based image reconstruction is well suited
for the task of intrinsic and extrinsic calibration of event
cameras. The advantage of our proposed approach is that
we can use standard calibration patterns that do not rely on
active illumination. Furthermore, our approach enables the
possibility to perform extrinsic calibration between frame-
based and event-based sensors without additional complex-
ity. Both simulation and real-world experiments indicate
that calibration through image reconstruction is accurate
under common distortion models and a wide variety of dis-
tortion parameters.

1. Introduction

Camera calibration is an essential component of com-
puter vision systems and has been thoroughly researched for
decades [2]. Typically, camera calibration methods extract
corners from a known calibration pattern, detect the pattern
and solve an optimization problem that optimizes for intrin-
sic and extrinsic parameters of the cameras. This approach
is nowadays widely used for standard frame-based cameras.
Unfortunately, this method cannot directly be used for event
cameras.

Event cameras are asynchronous sensors that pose a
paradigm shift in the way visual information is acquired. In
contrast to standard cameras that capture frames at regular
intervals, event cameras report per-pixel brightness changes
as a stream of asynchronous events. Due to this property,
image-based corner detection does not apply to event data
such that standard calibration frameworks cannot be used.

Instead, recent calibration methods for event cameras
rely on the usage of actively illuminated calibration patterns
such as blinking LED patterns [3, 4] or electronic display
devices [5, 6, 7, 8]. While blinking LED patterns can be
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Figure 1: Our approach for event camera calibration of a
hybrid multi-sensor setup consisting of an event camera, a
standard camera and an IMU. The asynchronous and sparse
event stream is passed to the network E2VID[1] which re-
constructs images. These reconstructed frames along with
the standard camera frames and IMU measurements allow
the calibration toolbox to estimate intrinsics (K), and extrin-
sics (T) of the cameras as well as to the IMU.

used to calibrate event cameras, they cannot be reliably de-
tected by standard cameras. Hence, such an approach is not
suitable for multiple camera calibration with both event and
standard cameras. Electronic display devices on the other
hand are not practical because it would require large screens
for good coverage, especially for multiple camera calibra-
tion. Furthermore, large screens are expensive, heavy, need
additional power sources, and are cumbersome to move in
front of a static camera setup. Earlier academic versions
of event cameras also captured monochrome images [9]
which can be used for calibration [10]. However, the lat-
est industrial-grade event cameras do not provide image in-
formation anymore [11]. As a consequence, event-based
calibration techniques are required.

Our proposed solution uses neural network-based image
reconstruction and unlocks the full potential of traditional

1



camera calibration framework. The advantage of image re-
construction for event camera calibration is threefold. First,
we do not require an actively illuminated device to detect
the calibration pattern. Second, traditional calibration pat-
terns can be detected by event and standard cameras alike.
This enables hybrid multiple camera calibration. Third, the
reconstructed images can be directly used by standard cali-
bration frameworks, unlocking their potential for optimized
calibration routines.

Our main contribution is the experimental validation of
this approach for intrinsic, and extrinsic calibration of event
cameras and hybrid setups involving standard cameras. We
show that image reconstruction is a suitable tool to achieve
accurate calibration performance in both synthetic and real-
world experimental settings.

2. Related work
In this section, we focus on related work and tools for

achieving intrinsic and extrinsic camera calibration involv-
ing event cameras without active pixel sensor circuits [9].

Open source toolboxes for intrinsic calibration of event
cameras primarily use blinking LED patterns [3, 4] or blink-
ing screens [5, 6, 7, 8] to extract the calibration pattern. Due
to rapid change of illumination, the patterns can be detected
even if it is static with respect to the camera frame. Once
the pattern is extracted, standard optimization-based cali-
bration back ends can be used. The main downsides of this
approach is that it requires a custom built calibration board
and that extrinsic event camera to standard camera calibra-
tion is not feasible.

The closest work to ours [12] applies image reconstruc-
tion for camera calibration. However, a detailed evalua-
tion of their method and a comparison against other meth-
ods was never conducted, thus leaving the question open
whether this method is accurate. In this work, we answer
this question by building on these initial results and care-
fully evaluating them on both synthetic and real-world data
from a variety of event cameras and lenses. We show that
this calibration approach outperforms existing methods by
a significant margin and yields consistently higher detection
ratio than other approaches. We also show that the calibra-
tion method is more robust and can be used with a variety
of lenses and cameras.

3. Methodology
In this section we describe the functionality of our event

camera calibration method. First, in Sec. 3.1, we introduce
the working principle of the event camera and review the
data structure measured by it. In Sec. 3.2 we present the
general method of calibration of event camera through in-
tensity reconstruction using E2VID[1], an open-source neu-
ral network to reconstruct frames from events, for camera

intrinsics calibration.

3.1. Event Data

Event cameras have pixels that are independent and re-
spond to changes in the continuous log brightness signal
L(uk, t). An event ek = (xk, yk, tk, pk) is triggered when
the magnitude of the log brightness at pixel u = (xk, yk)T

and time tk has changed by more than a threshold C since
the last event at the same pixel.

∆L(uk, tk) = L(uk, tk)− L(uk, tk −∆tk) ≥ pkC. (1)

Here, ∆tk is the time since the last triggered event, pk ∈
{−1,+1} is the sign of the change, also called polarity of
the event. Equation (1) describes the generative event model
for an ideal sensor [13, 14].

3.2. Camera Calibration

One of the fundamental building blocks of camera cal-
ibration is the detection of checkerboard corners, which
for standard images is usually performed with corner de-
tectors such as Harris[15] or Shi-Tomasi[16]. However,
these detectors, originally designed for images, are not di-
rectly applicable to events due to their intrinsically asyn-
chronous and sparse nature. For this reason we seek to
convert the asynchronous and sparse event stream to dense
images using the image reconstruction method in [1]. We
then reuse the standard detectors presented above on these
reconstructed images.

A high-level overview of our method is shown in figure
1 and can be summarized in the following procedure:

1. Divide event data in chunks of constant time duration.
In our experiment we chose the duration to be 50 mil-
liseconds. This is a hyperparameter which may require
modification to reach optimal performance. In case of
intrinsic calibration of a single event camera, the time
duration of these chunks does not have to be constant.
For example, one could choose to define the chunks by
the number of events within them.

2. Reconstruct image from event data using E2VID [1].
If extrinsic calibration to global shutter cameras is per-
formed, we reconstruct the image at the middle of the
exposure time of the global shutter cameras.

3. Prepare the image data for calibration according to the
calibration toolbox of choice and proceed with the cal-
ibration. In our experiments we use the Kalibr calibra-
tion toolbox [17].

In this procedure, we assume that all sensor data is syn-
chronized in time.
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4. Experiments

We assess the performance of this method with simulated
data and demonstrate the capability of this system for cal-
ibrating event cameras in real-world scenarios. For all the
experiments, we use the E2VID model provided by [1]. We
do not perform any fine-tuning for the experiments. Image
reconstruction is performed with a fixed time window of 50
milliseconds of events in all the experiments.

4.1. Intrinsic Calibration

4.1.1 Simulation

We simulate a camera moving in front of a calibration tar-
get to generate images and events. We use the state-of-
the-art event simulation, ESIM[18]. Given a camera trajec-
tory, ESIM can simulate events, standard frames and IMU.
ESIM also allows incorporating distortion when simulating
the events and frames. We generate sequences with three
distortion models: no-distortion, radial-tangential distortion
model and equidistant distortion model. The groundtruth
distortion parameters used in this experiment are shown in
Table 2 as d1, d2, d3 and d4. We generate a camera trajec-
tory in front of a calibration target, observing it from differ-
ent viewpoints. To evaluate the performance of E2VID in
reconstructing frames with the calibration target, we use a
detection accuracy metric. We detect the pattern on all the
E2VID frames and compute the number of images it could
detect the pattern pE2V ID. We also detect the pattern on all
the ground truth frames and compute the number of detec-
tions pGT . We then calculate the success ratio as pE2V ID

pGT

The calibration results for different calibration patterns and
distortion types are summarized in the Table 1.

E2VID has a high success ratio for no distortion models,
however the performance slightly decreases when signifi-
cant amount of distortion is introduced for the checkerboard
sequence. Moreover, the detection accuracy decreases sig-
nificantly for the AprilTag pattern as E2VID struggles to
reconstruct the fine details of AprilTags, appearing smooth
and leading to poor detection rate. Fig. 2 shows exemplar
image reconstructions for this experiment. We conclude
that checkerboard patterns are preferable to AprilTag pat-
terns for calibration with E2VID.

We also show the parameters that are estimated by
E2VID reconstructions for the checkerboard and AprilTag
pattern for all the distortion model in Table 2 The intrin-
sic parameters estimated by E2VID with the checkerboard
calibration pattern are more accurate compared to AprilTag
calibration, which is a direct consequence of the pattern de-
tection accuracy.
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Figure 2: E2VID reconstructed frames for simulation
dataset for different distortion models. The reconstructions
do not capture the fine details of april tag pattern. While
the checkerboard reconstructions also suffer from some ar-
tifacts, these artifacts do not affect the corners.

Pattern Checkerboard AprilTag

No distortion 1.0 0.981
Equidistant distortion 0.981 0.061
Radial-tangential distortion 0.755 0.329

Table 1: Pattern detection success ratio with different cali-
bration targets, namely AprilTag and Checkerboard for dif-
ferent distortion models: no distortion, equidistant distor-
tion, and radial-tangential.

4.1.2 Real-world Intrinsic Calibration

We now compare our approach with previously used base-
lines for calibration such as the blinking LED board and the
LCD screen. Here, we use 4 different event camera sen-
sors namely: DAVIS346 [9] (resolution 346 × 260), Sam-
sung Gen3 [19] (resolution 640 × 480), Prophesee Gen3
ATIS [20, 21] (resolution 480 × 360) and Prophesee Gen4
[22] (resolution 1280 × 720). The sensors cover a wide
range of camera resolutions and distortions. We collect cal-
ibration sequence from all the 4 sensors for three different
calibration methods: (i) blinking LED pattern, we create
a 5 × 5 grid of LED lights flickering at 500 Hz, (ii) LCD
screen, we use a LCD monitor to display a checkerboard
pattern flickering at 60 Hz (iii) Checkerboard, we use a tra-
ditional checkerboard plane which moves in front of the
camera. Apart from the events, DAVIS346 and Prophesee
Gen3 sensor also provide the grayscale frame. An impor-
tant point to note here is that the grayscale frames from
DAVIS346 are global shutter frames whereas the prophe-
see grayscale frames are generated from exposure measure-
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Parameters fx fy cx cy d1 d2 d3 d4

No distortion (AprilTag) 177.35 176.75 242.97 249.84 -0.004 0 0 0
No distortion (Checkerboard) 201.82 201.99 252.14 250.86 -0.003 0 0 0
GT 200 200 250 250 0 0 0 0

Equidistant distortion (AprilTag) 167.05 166.98 250.69 249.95 0.029 0.114 -0.161 0.0716
Equidistant distortion (Checkerboard) 205.11 204.91 250.05 249.91 -0.073 0.055 -0.085 0.056
GT 200 200 250 250 -0.051 0.046 -0.083 0.056

Radial-tangential distortion (AprilTag) 187.26 186.99 248.59 250.9 -0.323 0.132 -0.0024 0.002
Radial-tangential distortion (Checkerboard) 187.8 188.16 250.24 249.86 -0.336 0.145 -0.002 -0.001
GT 200 200 250 250 -0.383 0.189 -0.001 -0.001

Table 2: Kalibr camera intrisics parameters estimation with synthetic data of moving calibration target of checkerboard and
AprilTag pattern. Camera calibration is performed on the reconstructed frames from E2VID. fx and fy are the focal lengths,
cx and cy the principal point coordinates, and d1 to d4 the distortion parameters.

Figure 3: Coverage of detected patterns by Kalibr in the image plane of the Gen3 ATIS event camera. From left to right:
E2VID, LCD, and EM frames. In case of E2VID reconstructions, the whole image plane is covered with detected patterns
while this is not the case for LCD input or EM frames. Good coverage is key for achieving accurate calibration.

Figure 4: Comparison of an EM frame from the Gen3 ATIS
camera and a frame from the DAVIS346. The EM frames
are noisier compared to DAVIS frames and pose a challenge
for detecting calibration patterns.

ment (EM) events which encode the intensity of the event.
For clarification, we refer to these frames as EM frames.
Since EM frames are formed by events these are typically
noisy compared to DAVIS346 frames. Figure 4 shows this
qualitatively.

We use the calibration on grayscale frame as a base-
line to compare the accuracy of the event-based calibration
methods only for the Davis346 and Prophesee Gen3 sensor.
While the LCD screen and the checkerboard sequences can

be used with Kalibr toolbox, the blinking LED pattern uses
the OpenCV functions for blob detection followed by the
cameraCalibrate function.

Table 3 reports the ratio of number of frames where the
pattern was detected by the total number of frames in the
sequence. This is done for each calibration sequence with
the different calibration patterns. This metric provides an
estimate of how much of the image plane is covered by the
detected frames; an example of this is shown in figure 3 for
the Gen3 ATIS event camera. A low pattern detection score
would imply a lower coverage but it does not necessarily
imply high reprojection error. Instead, with low coverage,
the intrinsic parameters may not be valid for the whole im-
age area and lead to suboptimal performance in real-world
applications. We observe that the LCD screen performs the
worst while the blinking LED pattern performs slightly bet-
ter. The LCD screen performs worse because of the low
detection ratio. This low detection ratio is due to (i) the
movement of the LCD screen which causes motion blur in
the frames and (ii) noisy events triggered by the blinking
of the LCD screen. The Fig. 5 shows examples of event
frames from the DAVIS346 and Samsung Gen3 where the
pattern is most visible. In contrast, our method, outperforms
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Figure 5: Event frames from DAVIS346 and Samsung Gen3
for calibration with LCD screen.

Figure 6: Hybrid multiple camera setup consisting of 2
Prophesee event cameras, 2 FLIR global shutter cameras,
which is used for testing calibration consistency.

the baselines achieving a performance closest to the frame-
based method (for DAVIS346 and Prophesee Gen3).

The reprojection error can be seen as a metric that in-
forms about the accuracy of the detection front end. If the
extracted keypoints are always very close to the ideal key-
points, this metric is usually low. However, as mentioned
in the previous paragraph, this metric can also be low when
the pattern is only detected in a small portion of the image
area. Hence, low reprojection error is a necessary condi-
tion for successful calibration, not a sufficient one. Table
4 compares the root mean square (RMS) reprojection error
after the calibration procedure for all the calibration pat-
tern sequences. We observe that the RMS is consistently
low for our proposed method. Only DAVIS frames report
a lower reprojection error overall. Compared to the E2VID
and checkerboard combination, the LCD screen RMS re-
projection error is at least two times higher or even fails for
the DAVIS and Samsung cameras. The blinking LED cali-
bration pattern is the least accurate in our experiments. To
summarize, the E2VID calibration is successful and accu-
rate for all tested cameras.

4.2. Multi-Sensor Extrincis Calibration

The advantage of converting events to frames and using
them for calibration is that this allows us to use standard
calibration toolboxes designed for calibrating a vast array
of sensors with respect to a standard frame-based camera.
We demonstrate this by calibrating the extrinsic and intrin-
sic parameters of an event camera in combination with (i)

Figure 7: Boxplots visualizing the deviation from the es-
timated translation between cameras to the translation re-
trieved from the CAD model.

a standard-frame-based camera and (ii) an inertial measure-
ment unit (IMU).

4.2.1 Event Cameras and Standard Camera Calibra-
tion

For this experiment, we use 4 hardware synchronized cam-
eras consisting of 2 global shutter RGB cameras and 2 event
cameras in a dual-stereo setup, depicted in Fig. 6. The
two event cameras are at the rightmost and leftmost loca-
tion of the setup and consist of VGA resolution event cam-
eras. According to our CAD model the two standard cam-
eras have a baseline of 0.51 meters. In this setting, we
examine the repeatability and accuracy of multiple hybrid
camera calibration with our proposed approach. To assess
the repeatability of the approach, we calibrate the setup 11
times over the course of 1 month while it is used for data
collection. During this time, the translation between the
cameras remains approximately the same while the rota-
tion and intrinsic slightly change due to manipulation of the
setup. Fig. 7 shows the boxplot of the translational devia-
tion from the CAD model and estimated translation by our
proposed framework. Our CAD model is accurate up to
around 5 millimeter of translation. The errors are all well
within this limit, which shows that the extrinsic calibration
is accurate within the tolerance of our CAD model. Finally,
the narrow error bars suggest that the calibration could po-
tentially reach sub-millimeter accuracy. However, a con-
clusion in that regard requires more controlled experiments
with highly accurate CAD models.
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Sensor Modality Davis346 Samsung Gen3 Prophesee Gen3 Prophesee Gen4

Blinking LED E 0.04 0.06 0.035 0.0006
LCD screen E 0.003 0.016 0.0049 0.0026
Checkerboard (E2VID) E 0.47 0.65 0.155 0.217

Checkerboard (Frames) I 0.61 - 0.0434 -

Table 3: Pattern detection ratio for calibration sequences across different sensor resolutions and distortions. The input
modalities E and I represent events and images respectively that are used for the calibration method. Where I is not available
it is marked as -.

Sensor Modality Davis346 Samsung Gen3 Prophesee Gen3 Prophesee Gen4

Blinking LED E 4.38 6.20 10.93 13..91
LCD screen E x x 0.79 0.81
Checkerboard (E2VID) E 0.29 0.21 0.24 0.45

Checkerboard (Frames) I 0.17 - 0.50 -

Table 4: Root mean square (RMS) reprojection error after the calibration procedure of Kalibr. The input modalities E and I
represent events and images respectively that are used for the calibration method. Where I is not available it is marked as -.
We report the RMS reprojection error where Kalibr is successful, otherwise it is marked as x. Lowest (best) RMSE in bold.

4.2.2 Event Camera and IMU Calibration

Integrating IMU inertial information along with visual in-
formation advanced the progress of visual odometry. [23]
showed the advantage of combining events with IMU and
frames for visual-odometry in high dynamic range and high
speed motion. Combining these sensors requires a knowl-
edge of the rigid body transformations between them. In
this section, we show that by using E2VID for events, we
are able to calibrate an event camera with an IMU using
standard calibration toolbox Kalibr [17]. We compare the
result of Kalibr toolbox for camera-imu calibration on two
methods (i) using ATIS frames and IMU from the Prophesee
Gen3 [24] and (ii) using E2VID reconstructed frames and
IMU from the Prophesee Gen3 [24] The root-mean-squared
error between the translation vectors estimated by these two
methods is 0.74 cm, indicating that by using E2VID in our
calibration framework, we are able to accurately calibrate
our systems using only events.

5. Conclusion

In this paper, we propose a framework for calibrating
an event camera using image reconstruction. Our method
does not require a special calibration target like blink-
ing pattern or external monitor screens, previously used
for calibrating event cameras. By converting events to
frames using E2VID[1] for calibration, we unlock the po-
tential of event cameras to be used in multi-sensor con-
figurations for applications like autonomous driving, aug-
mented/mixed reality and robotics. Our experiments both
simulation and real-world indicate that calibration through
image-reconstruction is accurate under prevalent distortion
models and wide variety of possible parameter sets.
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Jiménez-Moreno, C. Conde, E. Cabello, and A. Linares-
Barranco, “Bio-inspired stereo vision calibration for dy-
namic vision sensors,” IEEE Access, vol. 7, pp. 138415–
138425, 2019. 1, 2

[5] Elias Mueggler, Basil Huber, and Davide Scaramuzza,
“Event-based, 6-DOF pose tracking for high-speed maneu-
vers,” in IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS),
pp. 2761–2768, 2014. 1, 2

[6] “Calibration toolbox by garrick orchard.” https://
github.com/gorchard/DVScalibration, 2015. 1,
2

[7] “Calibration toolbox by vlo group.” https://github.
com/VLOGroup/dvs-calibration, 2017. 1, 2

6



[8] “Calibration toolbox by prophesee.” https://docs.
prophesee . ai / metavision _ sdk / modules /
calibration/guides/intrinsics.html, 2020.
1, 2

[9] Christian Brandli, Lorenz Muller, and Tobi Delbruck, “Real-
time, high-speed video decompression using a frame- and
event-based DAVIS sensor,” in IEEE Int. Symp. Circuits Syst.
(ISCAS), pp. 686–689, 2014. 1, 2, 3

[10] E. Dubeau, M. Garon, B. Debaque, R. d. Charette, and J. F.
Lalonde, “Rgb-d-e: Event camera calibration for fast 6-dof
object tracking,” in 2020 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR), pp. 127–135, 2020.
1

[11] T. Finateu, A. Niwa, D. Matolin, K. Tsuchimoto, A.
Mascheroni, E. Reynaud, P. Mostafalu, F. Brady, L. Chotard,
F. LeGoff, H. Takahashi, H. Wakabayashi, Y. Oike, and
C. Posch, “5.10 a 1280×720 back-illuminated stacked tem-
poral contrast event-based vision sensor with 4.86µm pix-
els, 1.066geps readout, programmable event-rate controller
and compressive data-formatting pipeline,” in 2020 IEEE
International Solid- State Circuits Conference - (ISSCC),
pp. 112–114, 2020. 1

[12] M. Gehrig, W. Aarents, D. Gehrig, and D. Scaramuzza,
“Dsec: A stereo event camera dataset for driving scenarios,”
IEEE Robotics and Automation Letters, pp. 1–1, 2021. 2

[13] Guillermo Gallego, Jon E. A. Lund, Elias Mueggler, Henri
Rebecq, Tobi Delbruck, and Davide Scaramuzza, “Event-
based, 6-DOF camera tracking from photometric depth
maps,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40,
pp. 2402–2412, Oct. 2018. 2

[14] Guillermo Gallego, Tobi Delbruck, Garrick Orchard, Chiara
Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger,
Andrew Davison, Jörg Conradt, Kostas Daniilidis, and Da-
vide Scaramuzza, “Event-based vision: A survey,” IEEE
Trans. Pattern Anal. Mach. Intell., 2020. 2

[15] Chris Harris and Mike Stephens, “A combined corner and
edge detector,” in Proc. Fourth Alvey Vision Conf., vol. 15,
pp. 147–151, 1988. 2

[16] Jianbo Shi and Carlo Tomasi, “Good features to track,” in
IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), pp. 593–
600, 1994. 2

[17] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and
spatial calibration for multi-sensor systems,” in IEEE/RSJ
Int. Conf. Intell. Robot. Syst. (IROS), 2013. 2, 6

[18] Henri Rebecq, Daniel Gehrig, and Davide Scaramuzza,
“ESIM: an open event camera simulator,” in Conf. on
Robotics Learning (CoRL), 2018. 3

[19] Bongki Son, Yunjae Suh, Sungho Kim, Heejae Jung, Jun-
Seok Kim, Changwoo Shin, Keunju Park, Kyoobin Lee, Jin-
man Park, Jooyeon Woo, Yohan Roh, Hyunku Lee, Yibing
Wang, Ilia Ovsiannikov, and Hyunsurk Ryu, “A 640x480 dy-
namic vision sensor with a 9µm pixel and 300Meps address-
event representation,” in IEEE Intl. Solid-State Circuits Conf.
(ISSCC), 2017. 3

[20] Christoph Posch, Daniel Matolin, and Rainer Wohlgenannt,
“A QVGA 143dB dynamic range asynchronous address-
event PWM dynamic image sensor with lossless pixel-level

video compression,” in IEEE Intl. Solid-State Circuits Conf.
(ISSCC), pp. 400–401, 2010. 3

[21] Prophesee Evaluation Kits. https://www.prophesee.
ai/event-based-evk/, 2020. 3

[22] Thomas Finateu, Atsumi Niwa, Daniel Matolin, Koya
Tsuchimoto, Andrea Mascheroni, Etienne Reynaud, Poo-
ria Mostafalu, Frederick Brady, Ludovic Chotard, Florian
LeGoff, Hirotsugu Takahashi, Hayato Wakabayashi, Yusuke
Oike, and Christoph Posch, “A 1280x720 back-illuminated
stacked temporal contrast event-based vision sensor with
4.86µm pixels, 1.066geps readout, programmable event-
rate controller and compressive data-formatting pipeline,” in
IEEE Intl. Solid-State Circuits Conf. (ISSCC), 2020. 3

[23] Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschae-
fer, and Davide Scaramuzza, “Ultimate SLAM? combining
events, images, and IMU for robust visual SLAM in HDR
and high speed scenarios,” IEEE Robot. Autom. Lett., vol. 3,
pp. 994–1001, Apr. 2018. 6

[24] Christoph Posch, Daniel Matolin, and Rainer Wohlgenannt,
“A QVGA 143 dB dynamic range frame-free PWM image
sensor with lossless pixel-level video compression and time-
domain CDS,” IEEE J. Solid-State Circuits, vol. 46, pp. 259–
275, Jan. 2011. 6

7


