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Abstract

This paper investigates two typical image-type repre-
sentations for event camera-based tracking: time surface
(TS) and event map (EM). Based on the original TS-based
tracker, we make use of these two representations’ comple-
mentary strengths to develop an enhanced version. The pro-
posed tracker consists of a general strategy to evaluate the
optimization problem’s degeneracy online and then switch
proper representations. Both TS and EM are motion- and
scene-dependent, and thus it is important to figure out their
limitations in tracking. We develop six tracker variations
and conduct a thorough comparison of them on sequences
covering various scenarios and motion complexities. We
release our implementations and detailed results to ben-
efit the research community on event cameras: https:
//github.com/gogojjh/ESVO_extension.

1. Introduction

Event cameras are novel and bio-inspired sensors. Dif-
ferent from conventional frame cameras that capture images
at a fixed rate, they asynchronously capture the per-pixel in-
tensity changes and output a stream of events. Each event
is encoded with information, including the triggered time,
pixel localization, and the sign of the intensity change. As
summarized in [5], event cameras have high temporal res-
olution (µs-level), high dynamic range (140dB v.s. 60dB
of standard cameras), and low power consumption. These
characterisics enable event cameras to have great potential
for several computer vision and robotic tasks e.g., high-
speed motion estimation [2, 6] as well as feature tracking
[9, 31] and high dynamic range perception [16, 23], which
are difficult to frame cameras. However, research on stan-
dard vision problems with event cameras is still preliminary.

*This work was supported by Collaborative Research Fund by Research
Grants Council Hong Kong, under Project No. C4063-18G, Department of
Science and Technology of Guangdong Province Fund, under Project No.
GDST20EG54 and Zhongshan Municipal Science and Technology Bureau
Fund, under project ZSST21EG06, awarded to Prof. Ming Liu. Email:
jjiao@connect.ust.hk

This is because event cameras work in a fundamentally dif-
ferent way from frame cameras, which measure intensity
changes asynchronously rather than the absolute intensity
(i.e., grayscale data) at a constant rate. Thus, novel algo-
rithms to process events must be investigated.

In this paper, we restrict the scope of literature to the
SLAM problem using only event cameras, which does not
include methods that use frame cameras [26] or structured
light [13] to provide additional color/depth information.
Such a SLAM problem has been addressed step by step
in scenarios with an increasing complexity. Depending on
the complexity of this problem, recent works can be cate-
gorized along with three axes: 1) problem dimensionality:
from individually handling the localization and 3D recon-
struction subproblem [7] to solving the complete tracking-
and-mapping problem [21]; 2) type of motion: estimating
from constrained motions such as pure rotation or planar
motion [8, 12, 17] to arbitrary 6-DoF motions [29]; 3) type
of scenes: from artificial patterns [15] to natural scenes [22].

Two event camera-based methods, EVO [21] and ESVO
[29], stand out as solving the SLAM problem in the most
general setting (6-DoF motion and natural 3D scenes). Dif-
ferent from the earlier work [11] that needs to recover ab-
solute intensity on a dedicated hardware (GPU), both EVO
and ESVO directly directly run on a CPU in real-time.

EVO was proposed to solve the monocular event-based
state estimation, which consists of a plane sweep-based
mapper and a tracker that warps a semi-dense 3D map onto
a binary event map (EM). The tracker and mapper work in
a parallel manner. ESVO also follows this tracking-and-
mapping philosophy to design the stereo event-based Vi-
sual Odometry (VO) system. It exploits the novel time sur-
face (TS), which encodes spatio-temporal constraints, to es-
timate a semi-dense depth map for each stereo observation
pair. It utilizes the “negative” TS, which is aligned by the
3D map, to optimize pose parameters in tracking. In sum-
mary, trackers in both EVO and ESVO resemble the similar
frame-based paradigm [4]: they use non-linear optimization
to solve the 3D-2D alignment problem on image-type rep-
resentations. Although the EM and TS have been separately
applied in above event-based VO systems, the current liter-
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ature has not offered comparative results of them.
The motivation of this paper is to address this deficiency

by performing a comprehensive evaluation of the two repre-
sentations. Furthermore, we enhance the original TS-based
tracker by integrating it with the EM counterpart. This
tracker has a degeneracy evaluation module to determine
which representations are used. All implementations will
be publicly released, which are developed from the open-
source ESVO1. We conduct experiments on simulated and
real-world sequences, covering various scenarios from ar-
tificial patterns to natural scenes under motion in different
complexities. Besides the tracking accuracy, we also ana-
lyze the limitations of the EM and TS by presenting several
failure cases. We hope that our results and conclusions may
reference researchers on event-based SLAM and indicate
possible directions to improve the current state-of-the-art
(SOTA) methods.

2. Overview of Camera Tracking
2.1. Formulation

The tracking module estimates 6-DoF poses of the event
camera by taking the image-type event representations (also
called event frames) as input. It assumes that a semi-dense
3D map of the environment is given. We denote the refer-
ence camera frame as ()r and the current camera frame as
()c. We use M to indicate the template image in ()r which
is projected by the 3D mapM and Ī to denote the current
image. As explained in the following sections, Ī is defined
as the “negative” EM or TS. The goal of the tracking is to
find the transformation T (θ) that optimally alignsM onto
Ī . This “alignemnt” is done through the warping function:

W (x, d;θ)
.
= π

(
T (θ) · π−1(x, d)

)
, x ∈M, (1)

where θ are the pose parameters; T (θ) turns θ into a trans-
formation matrix from ()r to ()c; x = [u, v] is the localiza-
tion of a valid pixel on the template image; π(·) projects a
3D point onto the image plane, while π−1(·) back-projects
a pixel into 3D space with the known depth d. We minimize
the objective function to find the optimal θ∗ as

arg min
θ

∑
x∈M

ρ
(
Ī
(
W (x, d;θ)

)2)
, (2)

where Ī(·) is the pixel value and ρ(·) is the robust loss.
Following ESVO, we reformulate Problem (2) using the
forward compositional Lucas-Kanade method, which iter-
atively refines the incremental pose parameters ∆θ by min-
imizing the objective as

arg min
∆θ

∑
x∈M

ρ
(
Ī
(
W (W (x, d; ∆θ);θ)

)
2
)
, (3)

1https://github.com/HKUST-Aerial-Robotics/ESVO

(a) An example of the time surface
which is triggered at every 10ms

(b) An example of the event map
which aggregates 4000 events

Figure 1. An example of the TS and EM.

where the warping function is updated at each iteration

W (x, d;θ)←W (W (x, d; ∆θ);θ). (4)

The compositional approach is more efficient than the
original Lucas-Kanade algorithm. This is because the Ja-
cobian ∂W

∂θ of the warping function is evaluated at a fixed
point: (x,0) which can be pre-computed. Another refor-
mulation is called the inverse compositional Lucas-Kanade
algorithm, which is used in EVO. It switches the roles of
the template and current image. In other words, we need to
evaluate the gradient∇M of M as the part of the Jacobian,
not of Ī in the forward approach. But this paper employs
the forward approach that exploits the implicit “slope” fea-
ture of the TS. Moreover, the definition of θ varies accord-
ing to different parameterization ways, including the Lie al-
gebra [1] or Euler angles/Quaternions [25]/Cayley parame-
ters [3] for rotation with translation vectors.

2.2. Two Event Representations

2.2.1 Event Map

Besides EVO, the binary EM has also been applied in
visual-inertial odometry [20] where FAST corners [24] are
directly extracted and tracked. Constructing the EM is sim-
ple: a group of events within a temporal neighborhood is
aggregated onto the image. The pixel is set to 255 where an
event is fired; otherwise, it is set to zero. Therefore, EMs
are output in an asynchronous manner. But due to the data-
driven nature of event cameras, the number of events in the
group should be tuned for a specfic dataset. Otherwise if the
number is small, the frequency of producing EMs increases
when the camera moves rapidly or scenes are high-contrast.
This will raise the computational burden to the tracker.

2.2.2 Time Surface

The TS is also an image where each pixel stores a value.
Using an exponential decay kernel, TSs can emphasize re-
cent events over past events. Given an arbitrary timestamp
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t, the value at a pixel x is defined as

I(x, t)
.
= exp

(
− t− tlast(x)

δ

)
, (5)

where tlast(x) 6 t is the timestamp of the last event at x
and δ is the constant decay rate parameter (i.e., 30ms). This
equation converts events into an image whose intensity is a
function of the motion history at that location. Larger val-
ues correspond to a more recent motion. Online adjusting
the value of t can signal the creation of TSs synchronously
or asynchronously. In experiments, we output TSs in a syn-
chronous way. For convenient visualization and processing,
each TS is rescaled from [0, 1] to the range [0, 255].

2.2.3 Summary

We summarize the pros and cons of these representations
from recent literature [5]. Generally, EMs implicitly rep-
resent the edge map since events are mostly triggered by
edge patterns. They are the universal data structure compat-
ible with conventional computer vision. Also, generating
an EM is very fast (i.e., < 0.5ms). Nevertheless, EMs are
highly sensitive to motion blur if the number of aggregating
events is not set well. In contrast, TSs are more informative
than EMs even though they require around 5−10ms for the
synthesis. In experiments, we will further identify several
limitations of both EMs and TSs in challenging scenarios.

The tracker operates the “negative” event frames i.e.,
Ī(x) = 255− I(x). This is based on a crucial observation:
the objective (3) becomes minimum if the template image is
“perfectly” aligned on dark areas in the current frame. An
example can be seen in Fig. 4(c). Specifically, the nega-
tive TSs can be interpreted as an anisotropic distance field
as presented in edge-based VO [30]. To enlarge the conver-
gence basin’s width in optimization, a Gaussian blur (kernel
size = 5 pixels) is applied to negative event frames.

2.3. Enhanced Tracker with Degenearcy Check

The synchronous pose output of the TS-based tracker is
beneficial to sensor fusion like the visual-inertial odometry
or other robotic applications (e.g., drone racing). However,
unlike the EM that aggregates a fixed number of events, the
TS becomes unreliable if few events are triggered (see Sec-
tion 3). This issue frequently occurs where event cameras
are working in textureless scenarios or relatively static to
scenes. The “jump” in motion estimates is inevitable due to
unconstrained degrees of freedom.

In this paper, we enhance the original TS-based tracker
in robustness by taking EMs as the backup representation.
The proposed tracker is based on a test that online evaluates
the degeneracy of the optimization problem (3). Inspired
by [27], we use the factor λ as the degeneracy quantifica-
tion metric. λ is defined as the minimum eigenvalue of the

(a) simu office (b) simu poster (c) simu checkerboard

(d) rpg bin (e) rpg box (f) rpg desk

(g) rpg monitor (h) upenn flying1 (i) upenn flying3

Figure 2. Scene images of simu, rpg, and upenn sequences. The
camera resolutions are 346 × 260, 240 × 180, and 346 × 260,
respectively.

Hessian matrix which is computed by linearizing (3) as a
normal equation: H∆θ = g. We take both TSs and ESs
as input, but first utilize the TS-based tracker. Before op-
timization, we compute λ and check if it is smaller than a
threshold λth. If λ < λth, problem (3) may degenerate, and
we use the EM-based tracker to optimize the pose parame-
ters. The EM is constructed by aggregates the recent 4000
events. In experiments, we empirically set λth = 100.

3. Experiment
3.1. Implementation Details

We use the Eigen library [10] to solve the nonlinear op-
timization problem. The tracker requires a known 3D map,
which is computed by the mapping module of ESVO in real-
time. We use two public datasets, and the simulator [19]
to generate sequences for evaluation. All data were col-
lected with stereo event cameras, but the motion and scenes
present various difficulties. The simulator provides syn-
thetic data with a planar structure and an “ideal”, noise-free
camera model. We collect sequences (simu X) using stereo
event cameras before a wall with various backgrounds. We
category the collected simulated sequences into two classes
according to the motion complexity: 1) slow (≈ 0.3m/s)
and planar motion; 2) fast (≈ 1.0m/s) and 6-DoF motion.
Real-world data in [29] (rpg X) were collected in an office,
while that in [32] (upenn X) were collected by mounting
cameras on a flying drone in a capacious indoor area. Note
that the “X” indicates the type of scenes and motions. The
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(a) Failure case 1 (b) Failure case 2 (c) Failure case 3

Figure 3. Failure cases of the EM-based tracker which aggregates 3000 events. Sequences from left to right are: simu office 6DoF, rpg bin,
and rpg box.

Sequence TS EM2000 EM3000 EM4000 EM5000 TSEM4000

simu office planar 4.7 4.0 3.9 3.7 4.1 4.9
simu poster planar 4.7 3.7 4.3 4.6 5.0 5.2
simu checkerboard planar 4.2 2.9 2.2 2.3 2.4 3.5

simu office 6DoF 9.1 25.3 21.0 16.6 15.8 9.4
simu poster 6DoF 18.2 15.4 16.3 16.8 17.4 17.8
simu checkerboard 6DoF 23.0 17.0 14.0 15.1 13.4 22.4

rpg bin 6DoF 3.4 22.4 16.6 8.0 14.1 3.5
rpg box 6DoF 6.5 5.3 17.1 13.7 9.8 22.1
rpg desk 6DoF 3.4 2.9 3.3 3.2 2.9 3.6
rpg monitor 6DoF 7.2 5.3 5.2 7.4 7.3 7.3

upenn indoor flying1 6DoF 18.5 22.0 16.7 16.0 22.1 14.9
upenn indoor flying3 6DoF 20.9 10.8 11.9 14.0 15.0 10.6

Table 1. Mean Absolute Trajectory Error in translation [cm] under 10-trials. The first two lowest errors are marked as bold.

ground-truth camera poses are provided. Fig. 2 shows the
scene images. In experiments, the algorithm is executed on
a desktop with an i7 CPU@4.20 GHz.

3.2. Tracking Evaluation

We implement six tracker variations according to the
used representations. They are denoted by “TS”, “EM2000”,
“EM3000”, “EM4000”, “EM5000”, and “TSEM4000” respec-
tively. The subscript of “EM” indicates the number of
events to generate an EM. “TSEM4000” is the enhanced
tracker with the degeneracy check. To evaluate their per-
formance, we compute the pose accuracy using the absolute
trajectory error (ATE) in translation [28] w.r.t. the ground
truth. We conduct 10-trial SLAM tests on each sequence.
The mean ATE is reported in Table 1.

All trackers achieve similar accuracy on the simplest se-
quences (simu X planar), while they show worse accuracy
on more complex sequences. We cannot directly determine
which representations are better for tracking according to
the accuracy in Table 1 since all trackers may have large er-
rors on specific sequences. We should analyze the results by

TS EM2000 EM3000 EM4000 EM5000 TSEM4000

8± 5 8± 6 7± 4 7± 4 7± 4 7± 3

Table 2. Average computation time [ms] of trackers.

considering the characteristics of scenes and motion. The
TS-based tracker outperform others on simu office 6DoF,
rpg bin, and rpg box, where high-contrast textures such as
lines and rectangles are presented (see Fig. 2). In contrast,
we observe that EM-based trackers reach another local min-
ima which is far from the groundtruth during the optimiza-
tion process and thus result in low accuracy. Fig. 3 illus-
trates three failure cases.

On the other hand, EM-based trackers consistently have
better performance than their TS-based counterpart on
upenn indoor flying3. We note that few events are gener-
ated when the drone stops and hovers at some time. This
causes the generation of unreliable TSs which are triggered
at a constant rate. For the tracker, not enough constraints
(i.e., “dark areas” on TSs) make the optimization degener-
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(a) The value of the degeneracy factor λ on different sequences

(b) The 3D map is warped on the
negative Time surface (TS).

(c) The 3D map is warped on the
negative Event map (EM4000).

Figure 4. We plot the values of λ on three sequences in (a). At
the time of 8.2s of upenn indoor flying1 (b) where the TS-based
tracker degenerates, (c) the 3D map is well aligned on “dark areas”
of the negative EM with sufficient constraints.

ate or fail. An example is shown in Fig. 4, with the plot dis-
playing the value of the degeneracy factor λ on sequences:
simu office 6DoF, rpg box, and upenn indoor flying3. Re-
garding upenn indoor flying3, at the time of 8.2s, the TS-
based tracker degenerates due to the unreliable TS (see Fig.
4(b)). The corresponding factor λ is smaller than the thresh-
old. Therefore, we can swith the stable EM and then redo
the tracking, improving the tracker’s results.

The trajectories produced by the TS-based tracker on all
sequences are compared in Fig. 5, Fig. 6, and Fig. 7. Due to
limited space, only the ground truth trajectories and trajec-
tories of the tracker with the highest accuracy are shown as
the reference. Through these figures, readers can have a bet-
ter understanding of the above explanations. For example,
we observe that the poses of the TS-based tracker ”jump”
on upenn indoor flying3 from Fig. 7. The unreliable TS
causes degrades this performance.

3.3. Computation Time

The average computational time of tracker variations is
reported in Table 2, where all of them take around 7-8ms to
solve the pose estimation problem. Depending on the sensor
resolution, the creation of the TS takes about 5-10ms [29].
The degeneracy evaluation takes about 0.5-1.5ms.

3.4. Discussion

The presented trackers have limitations. First, although
the enhanced TSEM-based tracker can mitigate the un-

desirable effect caused by the unreliable TS, it suffers
shortcommings of both the TS and EM if λth is not
well tuned. This explains why the TSEM has bad accu-
racy on simu poster 6DoF, simu checkerboard 6DoF, and
rpg box. Hence, the utilization of the TSEM is subtle: tun-
ning a good parameter requies to know more about dataset,
while the degeneracy check is used to evaluate the condi-
tions in unfamiliar environments.

Second, we find that the estimated trajectories of the
current tracker are not smooth. TS-based tracker’s trajec-
tory on rpg monitor is visualized in Fig. 8. This is due to
the fact that the tracker lacks a regularization term in op-
timization. Possible solutions can be introducing the mo-
tion prior [4] or considering historical measurements (slid-
ing window-based framework [18] or full batch optimiza-
tion [15]). Moreover, as done in monocular event camera
with an IMU [20, 26, 33], stereo event-based VIO is an un-
explored but promissing direction for this problem.

Finally, the image-type representations quantize event
timestamps. The tracking results can be further optimized
by introducing spline-based optimization framework [9,14].

4. Conclusion
In this work, we have conducted extensive comparisons

of two image-type representations for event camera-based
tracking. We also introduce the degeneracy check and pro-
pose an enhanced tracker to make use of their comple-
mentary strengths. Furthermore, we implement six tracker
variations. In evaluating these trackers, our goal is to
benchmark their performance in different-complexity sce-
narios. The results presented in Section 3 suggest that each
representation has its own advantages and limitations for
tracking. Such event-based representations are scene- and
motion-dependent: both of them may degenerate in non-
ideal situations. We hope that these results and conclusions
shown in this paper may provide a reference for researchers
on event-based SLAM and indicate possible directions to
improve the state-of-the-art (SOTA) methods.
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