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Abstract

We developed and tested the architecture of a bio-
inspired Spiking Neural Network for motion estimation. The
computation performed by the retina is emulated by the
neuromorphic event-based image sensor DAVIS346 which
constitutes the input of our network. We obtained neu-
rons highly tuned to spatial frequency and orientation of
the stimulus through a combination of feed-forward excita-
tory connections modeled as an elongated Gaussian kernel
and recurrent inhibitory connections from two clusters of
neurons within the same cortical layers. Sums over adja-
cent nodes weighted by time-variable synapses are used to
attain Gabor-like spatio-temporal V1 receptive fields with
selectivity to the stimulus’ motion. In order to gain the
invariance to the stimulus phase, the two polarities of the
events provided by the neuromorphic sensor were exploited,
which allowed us to build two pairs of quadrature filters
from which we obtain Motion Energy detectors as described
in [2]. Finally, a decoding stage allows us to compute optic
flow from the Motion Detector layers. We tested the ap-
proach proposed with both synthetic and natural stimuli.

1. Introduction

We are immersed in a world in constant motion. For
this reason visual motion perception has been the subject
of extensive research in the fields of perceptual psychology,
neuro-physiology, and computational vision. Widespread
evidence pointed out that the mammalian brain evolved
specific mechanisms responsible for the processing of vi-
sual stimuli in order to extract motion information [8, 16].
These mechanisms characterize the cortical “motion path-
way” that involves first and foremost, the primary (or stri-
ate) visual cortex (area V1), and, then, continues to the

middle temporal visual area (MT or V5) and other extras-
triate areas. According to the principle of “building-to-
comprehend”, advances in high-performance computing is
the best ally to understand the properties of cells belonging
to these cortical areas. Recent asynchronous event-driven
cameras combined with Spiking Neural Networks (SNNs)
allow, indeed, real time simulations of large scale neural
networks by monitoring and manipulating any variable in
each neuron or synapse.
From an application perspective, asynchronous event-based
artificial retinas and SNN processors turn out to be the best
solutions to achieve flexibility and real-time performance.
Dynamic vision sensors [13] do not provide conventional
frames, but asynchronous ON and OFF events that signal
scene reflectance changes. These continuous-time sensors
functionally emulate some key features of the human retina
and represent a major shift from conventional frame-based
sensors, owning to the advantages of high temporal resolu-
tion and low power consumption. Accordingly, they trans-
mit only pixel-level changes, at microsecond time, equiva-
lent to a high-speed camera at thousands of frames per sec-
ond, but with far less data.

The price we pay when following this approach lies in
the necessity of specific novel algorithmic solutions, since
those developed for frame-based visual input are no longer
applicable. Plausible design solutions can be inspired by
the computational paradigms adopted in the visual cortices,
as they conform more to intrinsic structural properties of
the visual signal than to abstract calculus (i.e., to the com-
putational theory of the problem). In general, early vision
perceptual processes can be interpreted as a “measuring”
operation on a visual signal [1], by which to extract, on
a local basis, specific characteristics of the signal (ampli-
tude and phase of spectral components, orientation, direc-
tion of motion, etc.). In such a way, a parametric repre-
sentation of input signal occurs, on which to base the sub-
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sequent interpretation of the events of the visual scene, by
eventually combining such local representation over larger
spatial neighborhoods. In this scenario, guided by neuro-
physiological and modeling findings on the properties of
visual cortical neurons, a first challenge is to demonstrate
how a variety of computational visual tasks can be built by
following a compositional approach, which hierarchically
provide more complex visual descriptors by combining a
limited set of stereotyped basic blocks. Interestingly, these
solutions can have direct correspondences with their clas-
sical counterparts, and several works (e.g., [15, 10]) have
demonstrated that firing rate models can properly solve the
computational problem with adequate efficacy, higher flexi-
bility, and robustness to adverse illumination conditions and
to low S/N ratios. Yet, a second and harder challenge is to
demonstrate that the design principles exploited in the large-
scale network of firing-rate model neurons can be equiva-
lently mapped through an event-based coding on SNNs.

In this paper, we faced this challenge by designing and
testing a complete multilayer SNN for an explicit motion
estimation, i.e., the optic flow, in order to assess the net-
work performances through realistic motion sequences. The
network functionally mimics the cortical motion pathway.
The proposed neural architecture refers to a variant of the
Heeger and Simoncelli model [12][23] and is described
through a three-layer architecture composed of distributed
populations of cells. In the first layer, Gabor-like spatial re-
ceptive fields allow a band-pass filtering on the events com-
ing from a neuromorphic sensor, the DAVIS346, in order
to extract early vision features as the spatial frequency and
orientation from a dynamic stimulus. In the second layer,
a bank of spatio-temporal oriented filters approximates the
receptive fields (RFs) of the simple cells’ population of area
V1, which are tuned to different motion directions and con-
tribute to build the population of complex cells as motion
energy units [2]. The responses of the complex cells are
combined in the third layer to obtain estimates of the mag-
nitude and direction of local velocities, as it happens in area
MT [21]. Unlike other neuromorphic solutions that are far
from a bio-inspired approach, our network tries to faith-
fully emulate cortical processing, both in the computational
paradigms and in the dynamics of individual neurons, which
can be used as building blocks to design visual feature de-
tectors of increasing complexity.

2. Related work
Our work is positioned within the framework of bio-

inspired neuromorphic systems, in which the use of event-
driven sensors is making its way. Nowadays, the high de-
mand of these sensors is due to the great advantage offered
in real-time computing, especially for robotics, self-driving
vehicles and wearable systems. Many other works have
proposed SNNs capable of estimating speed and direction

of motion and the extraction of the optic flow. The first
approaches attempted to adapt well-known solutions in the
field of computer vision to an event-based framework. For
example, Benosman et al. [6] translated, in an event-based
approach, the constraints from one of the most popular tech-
niques formulated by Lucas and Kanade [14], based on the
brightness constancy assumption. In [9] the authors pro-
posed a hierarchical architecture for optical flow estimation
that use a bank of spatio-temporal filters selective at differ-
ent speeds and directions of motion (Gabor filters), equiva-
lent to correlation detectors. A more bio-inspired approach
is described in [17], in which an unsupervised SNN im-
plements a novel spike timing-dependent plasticity (STDP)
rule, in order to learn the proper filters from event data. Bar-
ranco et al. [4] proposed a simple method for locating tex-
ture regions and a novel phase-based method for motion es-
timation. A remarkable work is [20], in which the authors
compared the accuracy and processing time of nine event-
based optical flow algorithms. The algorithms considered
were a direction selective filter [11], four variants of the
Lucas-Kanade algorithm, four variants of local plane fits
[5], and a flow estimation based on the camera’s gyro infor-
mation instead of visual motion cues. In order to compara-
tively evaluate these methods, the authors created a public
dataset composed of synthesized samples and real samples
recorded from a 240x180 pixel Dynamic and Active-pixel
Vision Sensor (DAVIS). Finally, mention goes to [25], in
which cortical mechanisms combining filters with spatio-
temporal tuning are emulated and also used for classifica-
tion purposes.
Undoubtedly, the greatest challenge in this specific area is
to propose solutions that are biologically plausible, in or-
der to have the double advantage of reflecting computations
actually present in the cortex and to better understand their
functioning through emulation. Clearly, they should also
have the proper features for an efficient implementation in
neuromorphic processors.

3. Cortical-style visual processing
The proposed neural architecture refers to a variant of

the Heeger and Simoncelli model [12][23] and is described
through a three-layer network composed of distributed pop-
ulations of cells. In the first layer, Gabor-like spatial recep-
tive fields (RFs) allows a band-pass filtering on the input. In
the second layer, a bank of spatio-temporal oriented filters
approximates the RFs of simple cells in area V1. These neu-
rons are tuned to different motion directions and contribute
to build the population of complex cells as motion energy
units [2]. The responses of the complex cells are combined
in the third layer to obtain estimates of the magnitude and
direction of local velocities, as in MT cortical area [21].

The schematic representation in Fig. 1 shows the entire ar-
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Figure 1. Overall network architecture. The network is composed of (i) an input stage where the events, provided by the sensor, are
split in the two polarities (ON and OFF), (ii) the Perceptual Engines, (iii) a Motion Detector stage and (iv) a decoding stage for velocity
components. All synaptic connections (both solid and dashed lines) starting from the sensor input and ending in the perceptual engines
are excitatory. The dotted lines in the latter, indicating the recursive connections, are inhibitory. In the third layer of motion detectors, the
dotted lines indicate inhibitory synaptic connections.

chitecture of the network. It is composed of three main
building blocks: (i) an input stage, (ii) perceptual engines
and (ii) motion detector units. The final block represent the
decoding process.

Retinal input Starting from the sensory input, events in
the pixel array are divided in two groups according to their
ON or OFF polarity. This distinction will serve to create, in
subsequent stages, two pairs of quadrature filters in order to
obtain invariance on the stimulus’ phase, an essential com-
ponent of the Energy Model [2]. Squaring the response of
quadrature cells acting on a gray-scale image is no longer
feasible in a spike-based encoding mechanism. Therefore,
pairs of counterphase receptive fields are used on both ON
and OFF events, which separately encode the increase and
decrease of the light stimuli, respectively.

Oriented perceptual engines In the second stage, the
two parallel ON and OFF channels are preserved. Both

channels share the same configuration: same feed-forward
convolutional kernels acting on input events and same clus-
tered recursive inhibitions. Specifically, the weights of the
excitatory feed-forward synapses are arranged and shaped
according to an elongated Gaussian function. This provides
the neurons of the second stage with an orientation prefer-
ence. Here, neurons in both channels also receive recurrent
inhibitory afferences from two laterally clustered groups of
cells of the same layer. These groups are located at a dis-
tance d along the direction orthogonal to the major axis of
the feed-forward kernel. This recurrent inhibitory schema,
better described in [22], gave us the great advantage of re-
ducing the number of required connections to obtain neu-
rons with highly-structured receptive fields that approxi-
mate two-dimensional Gabor functions, markedly tuned to
stimulus’ spatial frequency and orientation. Neurons’ sen-
sitivity can be controlled and sharpened by appropriately
changing the spatial distance and the extensions of these in-
hibitory kernels.
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The neurons in this second stage are hereafter referred
to as “perceptual engines” because they provide compu-
tational primitives that can be composed to obtain more
powerful feature extractors by simply adjusting the weights
of specific efferences. The excitation of a neuron at this
stage, with orientation θ and in position n = (nx, ny),
could be formulated as:

e(n) = a
∑
p∈R

hff (n−p)s(p)−b
∑
q∈C

hfb(n−q)e(q) (1)

where a and b are respectively the strength of the feed-
forward (hff ) and recurrent (hfb) kernels, s is the visual
stimulus, R is the domain of the retinal driving input, and
C is the domain of the lateral cortical inhibition. Such
an equation describes the input/output relation of a lin-
ear recurrent inhibitory network characterised by a direct
(i.e., forward) feeding from an oriented neighborhood on
the retina layer and by clustered recurrent inhibitory con-
tributions from neurons lying along the orthogonal direc-
tion. The resulting spatial impulse response h of neuron n
is characterised by an even-symmetric spatial profile. The
final neuron ’firing rate’ response is obtained through a rec-
tified linear activation function: r(n) = F [e(n)].

We can consider the function h(n) as a primary char-
acteristics of the network and it represents an eigenmode
(the perceptual engine) that can be used to obtain more
powerful network responses. It has been demonstrated
[19] that by combining the responses of three neurons of
the V1 layer, the central one in position n and the lateral
ones at positions n − d and n + d, it is possible to obtain
Gabor-like functions of any phase ψ. The resulting filter
therefore represents a good approximation of a typical
kernel useful for computational vision processing:

g(n) = αh(n− d) + βh(n) + γh(n + d) =

∼= Ce−n·n/σ
2

cos(k0 · n + ψ)
(2)

where k0 represents the preferred spatial-frequency vector
of the neuron (with direction given by the tuning orien-
tation θ) and σ the extension of its receptive field. The
phase ψ can be then adjusted as desired by simply setting
appropriate values to the weights α, β and γ. A general
expression for these variables, as functions of the phase ψ,
can be formalized as follows: α = −Bsin(ψ)−Acos(ψ)

β = cos(ψ)
γ = Bsin(ψ)−Acos(ψ)

(3)

where A and B are coefficients whose values can be chosen
as 0.5 and 1, respectively. In this way, we ensure that the
sum of the three weights is equal to zero, i.e., at least ideally,
the resulting RF will filter out the DC component.

For any given value of the spatial phase ψ, we will then
have three specific values for the weights. As an example,
consider the case of orthogonal responses (i.e. a quadrature
pair) g(n) = gc(n) + jgs(n). The two symmetries can be
straightforwardly obtained by posing α = −0.5, β = 1,
γ = −0.5 for the even response, while α = −1, β = 0,
γ = 1 for the odd one.

Motion detectors By introducing a temporal dependency
in the weighting coefficients α, β, and γ of equation (3),
it is possible to obtain spatio-temporal filter. This mecha-
nism leads to a Gabor-like kernel with a time-variable spa-
tial phase ψ(t) = ω0t, as a local travelling wave with con-
stant velocity vf . Such a filter will therefore be able to de-
tect the presence or absence of a stimulus moving along a
specific direction and at a specific speed.

The resulting filter is described by the following equa-
tion:

g(n, t) = C ′e−t/τe−n·n/σ
2

cos(k0 · n± ω0t) (4)

with ω0 = vf · k0, where w0 and k0 are the preferred tem-
poral and spatial frequencies respectively and vf is the tun-
ing velocity of the neuron; the preferred direction of motion
along θ is determined by the sign of ψ(t). Finally, the term
e−t/τ represents a temporal envelope defined by the synap-
tic integration with time constant τ .

A quadrature pair of spatio-temporal filters can there-
fore be directly obtained by considering two sets of synaptic
connections, for even and odd symmetries respectively, that
weight the responses of the three mentioned above neurons.
In Fig. 1 the subscripts e/o of the weight functions refer
the different symmetries. Specifically, in order to obtain an
odd symmetry, the argument of the cosine function in equa-
tion (4) should have an additional phase shift of −π2 . Over-
all, a pair of quadrature filters was designed from both ON
and OFF channels, to achieve phase-invariant responses in
the post-synaptic neurons. Obviously, the addition of fur-
ther synapses with weights leading to different phase shifts
would improve the invariance property of such neurons to
the phase of the stimulus.

Due to these peculiar combinations of perceptual en-
gines, we obtain the “Motion Detector” units:

E(n, t; θ, vf ) = rON
c (n, t; θ, vf ) + rON

s (n, t; θ, vf ) (5)
+ rOFF

c (n, t; θ, vf ) + rOFF
s (n, t; θ, vf ),

which constitute the third stage of our architecture. To re-
fine the tuning properties on both the velocity magnitude
and direction of motion, a competition mechanism has been
introduced via soft winner-takes-all (WTA). In more detail,
each neuron inhibits all other neurons having different ve-
locity (or motion-direction) selectivity but with RF centered
on the same retinal location.

4



Decoding strategy From the motion detectors stage it is
possible to decode the motion energy responses along each
spatial orientation to compute component velocities vθ.
In order to estimate the component velocity vθ along the
preferred orientation of the cells, we use a center of mass
approach described in [18]:

vθ(n, t; θ) =

∑N
i vfiG(n) ∗ E(n, t; θ, vf i)

ε+
∑N
i G(n) ∗ E(n, t; θ, vfi)

(6)

where E(n, t; θ, vf i) is the output of the motion energy de-
tector tuned to the speed vf i (i.e., in a spike-based frame-
work, the instantaneous firing rate of such neuron), G(n)
is a Gaussian window used for pooling the motion detec-
tor over a spatial neighborhood, and ε is a positive (small)
constant that prevents division by zero.

Due to the aperture problem [3, 7], a motion estimation
based on the local computation of oriented RFs can recover
only the velocity component that is perpendicular to the
filter orientation. To this purpose, a measure of the full
velocity vector vp = (vx, vy) is achieved by means of
an intersection-of-constraints (IOC) mechanism. The
individual components of such vector are estimated as
described in [10], according to which the least square
solution of the IOC-based formulation for the computation
of full velocity can be written as:

vx(n, t) =
2

N

θN∑
θi=θ1

vθi(n, t)cos(θi)

vy(n, t) =
2

N

θN∑
θi=θ1

vθi(n, t)sin(θi)

(7)

The resulting velocity field, together with its confidence -
represented by the instantaneous firing rates of the spiking
motion detectors - represents the estimated optic flow.

4. Experiment
4.1. Event-based dataset

For characterizing the behavior of single neurons, we
used a set of stimuli consisting of drifting gratings with
different orientations θ and speeds vs. A drifting grating
is a sinusoidal oscillation in luminance L that moves at a
constant velocity (whose magnitude is determined by ωs)
along the direction of the wave vector ks:

L(x) = m[1 + c sin(ks · x + ωst)] (8)

where x denotes the spatial domain, m the mean back-
ground luminance and c ∈ [0, 1] the spatial contrast. This

type of stimulation allows us to study the response of a neu-
ron to variations of vs = ωsks and ks (both modulus and
direction θ).

The moving grating was presented on a computer mon-
itor with resolution 1920 × 1080, refresh rate of about
144 Hz, and maximum brightness. The DAVIS346 event-
based camera, used for the recordings, was placed in front
of the monitor at a distance of 30 cm, in a specifically-
dedicated dimly lit room. The Python code handling the
simultaneous presentation of the moving stimulus, together
with the recording of the output events from the sensor,
leverages the multiprocessing technique. The communica-
tion with the neuromorphic camera is based on a serial con-
nection and all events were saved to disk as numpy arrays
for off-line processing. The computer managing both data
logging and stimuli display run under Ubuntu-Linux 20.04
operating system. All recordings lasted 2 seconds and were
performed by setting the neuromorphic sensor biases to the
default values. The pixel array was then cropped by tak-
ing only the central 100× 100 portion, in order to limit the
computational cost of the subsequent network simulation.

In all the experiments the gratings’ contrast c was kept
constant to the maximum value. Stimuli were presented
with 24 orientations evenly spaced in range [0 − 180) deg,
with a 15 deg step. The spatial frequency values ranged
from 0 to 1.6 cyc/deg with a 0.2 cyc/deg constant step. Fi-
nally, the following values were chosen for the stimulus ve-
locities: 1, 2, 3, 4 deg/sec.

4.2. Simulations

The network was simulated for 2 seconds, with a sim-
ulation time-step of 0.1 ms. In order to characterize the
motion detectors, we consider all orientations and speeds
of the grating stimuli for the fixed spatial frequency value
of 0.6 cyc/deg. Instead, for characterizing the perceptual
engines alone, we took all spatial frequencies.

In the context of this work, the simulator used was
Brian2 [24], an open source, intuitive and highly flexible
tool for spiking neural networks. The neuron model we
chose to adopt is an Adaptive Exponential Integrate-and-
Fire neuron model (AdEx). The AdEx model can produce
many complex firing patterns observed in biology by tuning
a limited number of parameters, e.g. spike-frequency-
adaptation, bursting, regular/irregular spiking and transient
spiking. The evolution of the membrane potential in the
AdEx model is described by a two-variable equation as
below:

Cm
dVm
dt

= −gL(Vm−EL)+gL∆T e
(Vm−VT )

∆T −w+I (9)

where Vm is the membrane potential, I is the input (post-
synaptic) current, Cm the membrane capacitance, gL the
leak conductance, EL the leak reversal potential, VT the
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Figure 2. Spatial frequency tuning in perceptual engines. Three tuning curves obtained from the perceptual engines stage. The black
arrows point to the spatial frequency value at which the population is most selective. The abscissas show the spatial frequency values and
the ordinates the normalized mean firing rate of the population.

threshold and ∆T is the slope factor. The adaptation current
w has its own temporal dynamics described by the equation:

τw
dw

dt
= η(Vm − EL)− w (10)

where η is the adaptation coupling parameter and τw is the
adaptation time constant. If the membrane voltage crosses
a certain threshold voltage VT , a spike is emitted and the
neuron is reset:

V → Vreset

w → w + κ
(11)

where the parameter κ is responsible for spike-triggered
adaptation. Note that the AdEx model can be simply re-
duced to the standard Leaky Integrate-and-Fire model by
taking the limit ∆T → 0 in equation (9) and deactivating
the coupling parameter in (10).

Concerning the synaptic transmission, the biological
mechanism follows a complex but well established process.
It is challenging to model such a process and its dynamics.
Nevertheless, many simple phenomenological models of
synapses can represent the time and voltage dependence
of synaptic currents fairly well. Therefore, we opt for
an exponential function in order to model the synaptic
dynamics. This functions describes the evolution of the
synaptic conductance and hence the dependence of the
post-synaptic current to an input spike at time t0:

gsyn(t) = ḡsynexp

(
− t− t0

τ

)
(12)

Because of the presence of a single time constant τ , the
rising phase is instantaneous while the decay phase follow
the exponential term. In general this is far from a biological

condition, however provides a reasonable approximation for
many synapses.

5. Results
Spatial frequency tuning Firstly, we tested the percep-
tual engine stage of the network with a set of drifting grat-
ings having different spatial and temporal frequencies. The
aim was to ensure that the population, through the combi-
nation of feed-forward and recurrent contributions, was ca-
pable of acquiring selectivity at a specific spatial frequency
for all possible speeds of the input stimuli. As predicted
by the firing-rate model [22], the parameters that mostly in-
fluence such tuning are the geometrical dimensions of both
feed-forward and recurrent Gaussian kernels. Particularly,
the major impact is given by the standard deviation of both
kernels and the distance d between the two inhibitory clus-
ters. The resulting tuning curves, obtained by averaging
the activity of the entire cells’ population in the perceptual
engine stage, are shown in Fig. 2. Changing the relevant
parameters, we can obtain different spatial frequency se-
lectivity. We report three tuning examples at 0.4 cyc/deg,
0.8 cyc/deg and 1.2 cyc/deg. This behaviour is reproducible
for all tested speeds of the gratings.

Motion selectivity In order to make neurons selective to
the motion direction of the stimulus and to the desired set
of speeds vf , we had to impose the proper temporal fre-
quencies w0 to the time-variable synapses by acting on the
synaptic weights of equation (3). Since the tuning spatial
frequency of the neurons was set to 0.6 cyc/deg, in order
to achieve preferences to the speeds ± 1, 2, 3 and 4 deg/s,
we had to specify the following temporal frequencies: ±
0.6, 1.2, 1.8 and 2.4 cyc/s. Figure 3 shows the activity of
motion detectors with 4 different tuning speeds relative to
all possible speeds of the presented stimuli. The left plot
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shows the selectivity for positive speeds while the right one
for the negative motion. We can therefore notice that, as
in the classical energy model [2], our motion detectors are
able to discriminate fairly well the direction in which the
stimulus is moving and (although with some variability) the
speed value. Note that no decoding strategy was adopted to
plot these curves, but we only took the average activity of
sets of motion detector neurons.

stimulus speed [deg/s]stimulus speed [deg/s]
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Figure 3. Speed tuning in motion detectors. The network was
fed with events relative to drifting gratings with both positive (on
the left) and negative speeds (on the right) at different values. The
peak of each curve indicates the speed at which the population is
more selective. Colour opacity decreases as the modulus of the
speed decreases

Since we have considered different possible tuning ori-
entations for the neurons in the perceptual engine stage, this
feature should be inherited by the subsequent motion de-
tector stage. Thus, when exposed to an oriented grating,
the motion detector neurons are capable to detect this in-
put characteristic. A motion detector neuron having tun-
ing for a specific orientation θ will therefore encode the
speed component that is orthogonal to such direction. In
order to demonstrate that such orientation selectivity is ac-
tually preserved, we show in the spider chart of figure 4 the
response of the motion detector neurons to variously ori-
ented gratings: we can notice a marked tuning for the ori-
entation feature of the grating stimulus. This ability is ac-
quired by appropriately setting the orientation of the feed-
forward kernel from the sensory input to the perceptual en-
gine stage, and by rotating accordingly the axis that aligns
the two inhibitory recurrent Gaussian clusters. In particular,
we have considered 12 values for the tuning orientations,
evenly spaced in range [0 − 180) deg, with a 30 deg step,
but we actually tested the network on 24 stimulus’ orienta-
tions. Such response, for any given tuning θ < 180, is the
average on n and on any positive speed +vf . The curves
for θ ≥ 180 instead were obtained by averaging the activity
of neurons with opposite motion direction preference (i.e.
negative speeds).

18

Figure 4. Direction tuning in motion detectors. Results from the
simulations with oriented drifting gratings. Each radius represents
the activity of a population at the last stage of the network, while
the different colors identify the orientations of the tested stimulus.
For the sake of clarity, the same colour has been used to indicate
selectivity at a given stimulus’ orientation and to the correspond-
ing one with a shift of 180 deg.

Real-world application. To validate the functionality of
the network, we tested it with natural stimuli, in particular a
shaking drumstick. The gesture of a drum player musician
moving the sticks can be characterised by different speeds
and different inclinations of them. Having acquired the sim-
ulation data from the motion detector stage, the last process-
ing stage is represented by the decoder, from which we were
able to extrapolate the optic flow. The result is shown in fig-
ure 5, in which we provide a frame, selected from a video,
of the event-based optic flow computation. The green ar-
rows identify the drumsticks’ direction and speed of motion
superimposed on a frame obtained by accumulating events
in a given time window (of 20 ms).

Figure 5. Optic flow. Optic flow from an example of real-world
application. The neuromorphic sensor was placed in front of a
subject moving the drumstick (in this case, upwards along a 45◦

direction).
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6. Conclusion
In this work we have presented the architecture of spik-

ing neural network for optic flow estimation. The network
is fully bio-inspired, both at the level of cortical stages
and processing, and of individual units, such as neurons
and synapses. The innovative feature of our approach con-
cerns having adapted and extended some known rate-based
mechanisms to a spike-based network. Notably, we have
described the application of particular synapses, having a
temporal dependence, in order to obtain spatio-temporal re-
ceptive fields from combinations of static Gabor-like spa-
tial filters. The first processing stage of our network (which
we defined as the perceptual engine) can be seen as a basic
building block. A simple but proper combination of these
elements gives rise to neuronal detectors of the desired com-
plex visual features. This architecture has therefore allowed
us to obtain velocity estimates for both synthetic and natural
stimuli. Our future goal is to extend the region of the pro-
cessed image by considering a larger portion of the sensor
input and include a multi-scale analysis that will therefore
increase the computational accuracy in more complex vi-
sual scenes.
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